Menu Close

Find-the-largest-value-of-the-non-negative-integer-p-for-which-lim-x-1-px-sin-x-1-p-x-sin-x-1-1-1-x-1-x-1-4-




Question Number 216077 by MATHEMATICSAM last updated on 27/Jan/25
Find the largest value of the non negative  integer p for which   lim_(x→1)  {((− px + sin(x − 1) + p)/(x + sin(x − 1) − 1))}^((1 − x)/(1 − (√x)))  = (1/4) .
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{non}\:\mathrm{negative} \\ $$$$\mathrm{integer}\:{p}\:\mathrm{for}\:\mathrm{which}\: \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left\{\frac{−\:{px}\:+\:\mathrm{sin}\left({x}\:−\:\mathrm{1}\right)\:+\:{p}}{{x}\:+\:\mathrm{sin}\left({x}\:−\:\mathrm{1}\right)\:−\:\mathrm{1}}\right\}^{\frac{\mathrm{1}\:−\:{x}}{\mathrm{1}\:−\:\sqrt{{x}}}} \:=\:\frac{\mathrm{1}}{\mathrm{4}}\:. \\ $$
Answered by mahdipoor last updated on 27/Jan/25
ln(y)=(((1−x)/(1−(√x))))ln(((sin(x−1)+p(x−1))/(sin(x−1)+(x−1))))  ⇒lim_(x→1)  ((1−x)/(1−(√x)))=1+(√x)=2  ⇒lim_(x→1)  ((sin(x−1)+p(x−1))/(sin(x−1)+(x−1)))=(0/0) ⇒ hopital ⇒  ⇒ =((cos(x−1)+p)/(cos(x−1)+1))=((p+1)/2)  lim_(x→1)  ln(y)=ln((1/4))=2×ln(((p+1)/2))   ⇒ p=0
$${ln}\left({y}\right)=\left(\frac{\mathrm{1}−{x}}{\mathrm{1}−\sqrt{{x}}}\right){ln}\left(\frac{{sin}\left({x}−\mathrm{1}\right)+{p}\left({x}−\mathrm{1}\right)}{{sin}\left({x}−\mathrm{1}\right)+\left({x}−\mathrm{1}\right)}\right) \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}−{x}}{\mathrm{1}−\sqrt{{x}}}=\mathrm{1}+\sqrt{{x}}=\mathrm{2} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{sin}\left({x}−\mathrm{1}\right)+{p}\left({x}−\mathrm{1}\right)}{{sin}\left({x}−\mathrm{1}\right)+\left({x}−\mathrm{1}\right)}=\frac{\mathrm{0}}{\mathrm{0}}\:\Rightarrow\:{hopital}\:\Rightarrow \\ $$$$\Rightarrow\:=\frac{{cos}\left({x}−\mathrm{1}\right)+{p}}{{cos}\left({x}−\mathrm{1}\right)+\mathrm{1}}=\frac{{p}+\mathrm{1}}{\mathrm{2}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{ln}\left({y}\right)={ln}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\mathrm{2}×{ln}\left(\frac{{p}+\mathrm{1}}{\mathrm{2}}\right)\: \\ $$$$\Rightarrow\:{p}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *