Menu Close

Question-216093




Question Number 216093 by mnjuly1970 last updated on 27/Jan/25
Answered by mahdipoor last updated on 27/Jan/25
note : 0≤x<1  ,  y^2 =(1+y^2 )x  get  f=ln(y)+ln(y′)  ⇒(df/dx)=(y^′ /y)+(y^(′′) /(y′))=2ϕ  f=ln(yy^′ )=ln((1/2)×(d/dx)(y^2 ))=  ln((1/2))+ln((1/((1−x)^2 )))  ⇒⇒(df/dx)=(2/(1−x))=2ϕ ⇒ ϕ=(1/(1−x))=1+y^2   ⇒∫_0 ^(  ∞)  ((ln(1+y))/(1+y^2 ))dy = ...
$${note}\::\:\mathrm{0}\leqslant{x}<\mathrm{1}\:\:,\:\:{y}^{\mathrm{2}} =\left(\mathrm{1}+{y}^{\mathrm{2}} \right){x} \\ $$$${get}\:\:{f}={ln}\left({y}\right)+{ln}\left({y}'\right) \\ $$$$\Rightarrow\frac{{df}}{{dx}}=\frac{{y}^{'} }{{y}}+\frac{{y}^{''} }{{y}'}=\mathrm{2}\varphi \\ $$$${f}={ln}\left({yy}^{'} \right)={ln}\left(\frac{\mathrm{1}}{\mathrm{2}}×\frac{{d}}{{dx}}\left({y}^{\mathrm{2}} \right)\right)= \\ $$$${ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+{ln}\left(\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\right) \\ $$$$\Rightarrow\Rightarrow\frac{{df}}{{dx}}=\frac{\mathrm{2}}{\mathrm{1}−{x}}=\mathrm{2}\varphi\:\Rightarrow\:\varphi=\frac{\mathrm{1}}{\mathrm{1}−{x}}=\mathrm{1}+{y}^{\mathrm{2}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:\:\infty} \:\frac{{ln}\left(\mathrm{1}+{y}\right)}{\mathrm{1}+{y}^{\mathrm{2}} }{dy}\:=\:… \\ $$
Commented by mnjuly1970 last updated on 27/Jan/25
thank you so much
$${thank}\:{you}\:{so}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *