Question Number 216188 by BaliramKumar last updated on 29/Jan/25

Answered by som(math1967) last updated on 29/Jan/25

$$\:{AC}:{BC}=\mathrm{5}:\mathrm{12} \\ $$$${if}\:{AC}=\mathrm{5}{cm}\:{BC}=\mathrm{12}{cm} \\ $$$${then}\:{AC}+{BC}=\mathrm{17}={AB} \\ $$$${not}\:{possible} \\ $$$${AC}=\mathrm{10}{cm} \\ $$$$\:\:{BC}=\mathrm{24}{cm} \\ $$$$\:{then}\:{AC}+{AB}=\mathrm{10}+\mathrm{17}=\mathrm{27}>{BC} \\ $$$${so}\:{possible}\:{perimeter} \\ $$$$\:\mathrm{10}+\mathrm{17}+\mathrm{24}=\mathrm{51}{cm} \\ $$
Answered by Rasheed.Sindhi last updated on 29/Jan/25

$${AB}={AD}+{BD}=\mathrm{5}+\mathrm{12}=\mathrm{17} \\ $$$${AC}:{BC}=\mathrm{5}:\mathrm{12} \\ $$$${let}\:{AC}=\mathrm{5}{m}\:\&\:{BC}=\mathrm{12}{m};\:{m}\in\mathbb{N} \\ $$$$\underline{{AC}+{BC}>{AB}_{\:} } \\ $$$$\mathrm{5}{m}+\mathrm{12}{m}>\mathrm{17}\Rightarrow\mathrm{17}{m}>\mathrm{17}\Rightarrow{m}>\mathrm{1} \\ $$$$\: \\ $$$$\underline{{AC}+{AB}>{BC}_{\:} } \\ $$$$\mathrm{5}{m}+\mathrm{17}>\mathrm{12}{m}\Rightarrow\mathrm{7}{m}<\mathrm{17}\Rightarrow{m}<\mathrm{3} \\ $$$$\therefore\:{m}=\mathrm{2} \\ $$$$\therefore\:{AC}=\mathrm{10}\:\&\:{BC}=\mathrm{24} \\ $$$${Perimeter}={AB}+{BC}+{AC} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{17}+\mathrm{24}+\mathrm{10}=\mathrm{51}{cm} \\ $$
Answered by dionigi last updated on 31/Jan/25

$$\frac{{AC}}{{BC}}\:=\:\frac{{AD}}{{BD}}\:=\:\frac{\mathrm{5}}{\mathrm{12}} \\ $$$$\frac{{AC}}{{AD}}\:=\:\frac{{BC}}{{BD}}\:=\:{x}\:\left({x}\geqslant\mathrm{1}\right)\: \\ $$$$\left.\begin{matrix}{\left({AC},{BC}\right)\:\in\:\mathbb{N}^{\mathrm{2}} }\\{\nexists\:{m},\:\mathrm{5}\:\mathrm{mod}\:{m}\:=\:\mathrm{12}\:\mathrm{mod}\:{m}\:=\:\mathrm{0}}\end{matrix}\right\}\:\Rightarrow\:{x}\:\in\:\mathbb{N} \\ $$$${p}\:=\:{AC}+{AD}+{BD}+{BC} \\ $$$${p}\:=\:\left({AD}+{BD}\right)\left(\mathrm{1}+{x}\right) \\ $$$${p}\:=\:\mathrm{17}\:\left(\mathrm{1}+{x}\right) \\ $$$${p}\:=\:\mathrm{17}\:{n}\:\left({n}\:=\:{x}+\mathrm{1}\:\geqslant\mathrm{2},\:{n}\:\in\:\mathbb{N}\right) \\ $$$${n}\:=\:\mathrm{2}\:\Rightarrow\:{p}\:=\:\mathrm{34} \\ $$$${n}\:=\:\mathrm{3}\:\Rightarrow\:\boldsymbol{{p}}\:=\:\mathrm{51} \\ $$$${n}\:=\:\mathrm{4}\:\Rightarrow\:\boldsymbol{{p}}\:=\:\mathrm{68} \\ $$
Commented by Rasheed.Sindhi last updated on 31/Jan/25

$${For}\:\boldsymbol{{p}}=\mathrm{34}\:,\:\mathrm{68}\:{what}\:{are}\:{the}\:{values} \\ $$$${of}\:{the}\:{sides}\:{of}\:{the}\:{triangle}? \\ $$
Commented by dionigi last updated on 01/Feb/25

$${for}\:{p}\:=\:\mathrm{34} \\ $$$$\angle{CAB}\:=\:\angle{ABC}\:=\:\mathrm{0}\:;\:\angle{ACB}\:=\:\pi \\ $$$${AC}\:=\:\mathrm{5}\:;\:{BC}\:=\:\mathrm{12}\:;\:{AB}\:=\:\mathrm{17} \\ $$$$\angle{CAB}\:+\:\angle{ABC}\:+\:\angle{ACB}\:=\:\pi \\ $$$${AC}\:+\:{BC}\:+\:{AB}\:=\:\mathrm{34} \\ $$$${set}\:\Delta\:{the}\:{line}\:{bisector}\:{of}\:\angle{ACB} \\ $$$${D}={C}\:\Rightarrow\:{D}\:\in\:\Delta \\ $$$${and}\:\frac{{AC}}{{BC}}\:=\:\frac{\mathrm{5}}{\mathrm{12}} \\ $$$$ \\ $$$${but}\:{p}\:=\:\mathrm{68}\:{is}\:{not}\:{a}\:{solution} \\ $$$$\frac{{AC}}{{BC}}\:=\:\frac{\mathrm{5}}{\mathrm{12}}\:{is}\:{not}\:{a}\:{sufficient}\:{pattern} \\ $$$${BC}\:\leqslant\:{AB}\:+\:{AC}\:{is}\:{mandatory}\:{also} \\ $$
Commented by som(math1967) last updated on 01/Feb/25

$${BC}<{AB}+{AC},\:{not}\leqslant \\ $$$${only}\:{solution}\:{is}\:\mathrm{51} \\ $$
Commented by Rasheed.Sindhi last updated on 01/Feb/25

$${But}\:\frac{{AC}}{{BC}}=\frac{\mathrm{5}}{\mathrm{22}}\neq\frac{\mathrm{5}}{\mathrm{12}} \\ $$
Commented by dionigi last updated on 01/Feb/25

$${BC}\:=\:{AB}+{AC}\:{remains}\:{correct} \\ $$$${This}\:{means}\:{that}\:{C},\:{A},\:{D},\:{B}\:{are}\:{aligned}\: \\ $$$${on}\:{the}\:{same}\:{line}\:\Delta \\ $$$${AC}\:=\:\mathrm{5},\:{BC}\:=\:\mathrm{22}\:{and}\:{AB}\:=\:\mathrm{17} \\ $$$${AC},\:{BC},\:{and}\:{AB}\:{are}\:{all}\:{integers}. \\ $$$${The}\:\mathrm{3}\:{angles}\:{of}\:{the}\:{triangle}\:{are}\: \\ $$$$\angle{ACB}\:=\:\angle{ABC}\:=\:\mathrm{0}\:{and}\:\angle{CAB}\:=\:\pi \\ $$$${Line}\:\Delta\:{is}\:{bisector}\:{of}\:\angle{ACB}\:{and}\:{D}\:\in\:\Delta \\ $$$${All}\:{the}\:{patterns}\:{of}\:{the}\:{initial}\:\:{problem}\: \\ $$$${are}\:{true},\:{but}\:{perimeter}\:{p}\:=\:\mathrm{44}\:{was}\: \\ $$$${not}\:{proposed}\:{in}\:{the}\:{choice}. \\ $$
Commented by dionigi last updated on 01/Feb/25

$${Right}\:! \\ $$