Menu Close

If-ab-2-bc-2-ca-2-0-then-find-a-b-b-c-b-c-c-a-c-a-a-b-2-




Question Number 216312 by MATHEMATICSAM last updated on 03/Feb/25
If ab^2  + bc^2  + ca^2  = 0 then find   ((a/b) + (b/c)) + ((b/c) + (c/a)) + ((c/a) + (a/b)) + 2.
$$\mathrm{If}\:{ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find}\: \\ $$$$\left(\frac{{a}}{{b}}\:+\:\frac{{b}}{{c}}\right)\:+\:\left(\frac{{b}}{{c}}\:+\:\frac{{c}}{{a}}\right)\:+\:\left(\frac{{c}}{{a}}\:+\:\frac{{a}}{{b}}\right)\:+\:\mathrm{2}. \\ $$
Answered by Rasheed.Sindhi last updated on 03/Feb/25
ab^2  + bc^2  + ca^2  = 0  ((ab^2 )/(abc))+((bc^2 )/(abc))+((ca^2 )/(abc))=0  (b/c)+(c/a)+(a/b)=0  2((b/c)+(c/a)+(a/b))=0  (b/c)+(c/a)+(a/b)+(b/c)+(c/a)+(a/b)=0  ((a/b)+(b/c))+((b/c)+(c/a))+((c/a)+(a/b))+2=2
$${ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\frac{{ab}^{\mathrm{2}} }{{abc}}+\frac{{bc}^{\mathrm{2}} }{{abc}}+\frac{{ca}^{\mathrm{2}} }{{abc}}=\mathrm{0} \\ $$$$\frac{{b}}{{c}}+\frac{{c}}{{a}}+\frac{{a}}{{b}}=\mathrm{0} \\ $$$$\mathrm{2}\left(\frac{{b}}{{c}}+\frac{{c}}{{a}}+\frac{{a}}{{b}}\right)=\mathrm{0} \\ $$$$\frac{{b}}{{c}}+\frac{{c}}{{a}}+\frac{{a}}{{b}}+\frac{{b}}{{c}}+\frac{{c}}{{a}}+\frac{{a}}{{b}}=\mathrm{0} \\ $$$$\left(\frac{{a}}{{b}}+\frac{{b}}{{c}}\right)+\left(\frac{{b}}{{c}}+\frac{{c}}{{a}}\right)+\left(\frac{{c}}{{a}}+\frac{{a}}{{b}}\right)+\mathrm{2}=\mathrm{2} \\ $$
Answered by som(math1967) last updated on 03/Feb/25
 ((2a)/b) +((2b)/c) +((2c)/a) +2  =((2a^2 c+2b^2 a+2c^2 b)/(abc)) +2  =((2(ab^2 +bc^2 +ca^2 ))/(abc)) +2  =((2×0)/(abc)) +2=2
$$\:\frac{\mathrm{2}{a}}{{b}}\:+\frac{\mathrm{2}{b}}{{c}}\:+\frac{\mathrm{2}{c}}{{a}}\:+\mathrm{2} \\ $$$$=\frac{\mathrm{2}{a}^{\mathrm{2}} {c}+\mathrm{2}{b}^{\mathrm{2}} {a}+\mathrm{2}{c}^{\mathrm{2}} {b}}{{abc}}\:+\mathrm{2} \\ $$$$=\frac{\mathrm{2}\left({ab}^{\mathrm{2}} +{bc}^{\mathrm{2}} +{ca}^{\mathrm{2}} \right)}{{abc}}\:+\mathrm{2} \\ $$$$=\frac{\mathrm{2}×\mathrm{0}}{{abc}}\:+\mathrm{2}=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *