Menu Close

Question-216352




Question Number 216352 by issac last updated on 05/Feb/25
Commented by issac last updated on 05/Feb/25
and what Flux ∫∫_S  F^→ ∙dS^→ = 0 mean??  S is Arbitary Closed Surface
$$\mathrm{and}\:\mathrm{what}\:\mathrm{Flux}\:\int\int_{\mathcal{S}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\centerdot\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathrm{S}}}=\:\mathrm{0}\:\mathrm{mean}?? \\ $$$$\mathcal{S}\:\mathrm{is}\:\mathrm{Arbitary}\:\mathrm{Closed}\:\mathrm{Surface}\: \\ $$
Answered by MrGaster last updated on 07/Feb/25
The flux is zero if the divergence of F^→ is 0 throughout the volume V  boumded by S.
$$\mathrm{The}\:\mathrm{flux}\:\mathrm{is}\:\mathrm{zero}\:\mathrm{if}\:\mathrm{the}\:\mathrm{divergence}\:\mathrm{of}\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\mathrm{is}\:\mathrm{0}\:\mathrm{throughout}\:\mathrm{the}\:\mathrm{volume}\:{V}\:\:\mathrm{boumded}\:\mathrm{by}\:\mathcal{S}. \\ $$
Commented by issac last updated on 07/Feb/25
Thx.....!!
$$\mathrm{Thx}…..!! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *