Menu Close

without-using-LHopital-rule-evalute-lim-x-0-ln-1-x-sin-x-1-cox-2-x-




Question Number 216638 by Nadirhashim last updated on 13/Feb/25
  without using LHopital     rule evalute       lim_(x→0) ((ln(1−x)−sin(x) )/(1−cox^2 (x)))
$$\:\:\boldsymbol{{without}}\:\boldsymbol{{using}}\:\boldsymbol{{LHopital}} \\ $$$$\:\:\:\boldsymbol{{rule}}\:\boldsymbol{{evalute}}\: \\ $$$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\boldsymbol{{ln}}\left(\mathrm{1}−{x}\right)−\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\:}{\mathrm{1}−\boldsymbol{{cox}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)} \\ $$
Commented by MathematicalUser2357 last updated on 13/Feb/25
typo in denominator
$${typo}\:{in}\:{denominator} \\ $$
Answered by mahdipoor last updated on 13/Feb/25
(((−x−(x^2 /2)−(x^3 /3)−...)−(x−(x^3 /(3!))+(x^5 /(5!))−...))/(1−(1−(x^2 /(2!))+(x^4 /4)−..)^2 ))  =((x(a+bx+...))/(x^2 (A+Bx+..))) ⇒ lim x→0 = ±∞
$$\frac{\left(−{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−…\right)−\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−…\right)}{\mathrm{1}−\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{4}}−..\right)^{\mathrm{2}} } \\ $$$$=\frac{{x}\left({a}+{bx}+…\right)}{{x}^{\mathrm{2}} \left({A}+{Bx}+..\right)}\:\Rightarrow\:{lim}\:{x}\rightarrow\mathrm{0}\:=\:\pm\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *