Menu Close

Question-216670




Question Number 216670 by ahmed2025 last updated on 15/Feb/25
Answered by shunmisaki007 last updated on 15/Feb/25
∫cos^(−x) (π)dx=∫(−1)^(−x) dx     =∫(e^(πi) )^(−x) dx=∫e^(−πix) dx     =(1/(−πi))e^(−πix) +C  ∴∫cos^(−x) (π)dx=((i(−1)^(−x) )/π)+C ★
$$\int\mathrm{cos}^{−{x}} \left(\pi\right){dx}=\int\left(−\mathrm{1}\right)^{−{x}} {dx} \\ $$$$\:\:\:=\int\left({e}^{\pi{i}} \right)^{−{x}} {dx}=\int{e}^{−\pi{ix}} {dx} \\ $$$$\:\:\:=\frac{\mathrm{1}}{−\pi{i}}{e}^{−\pi{ix}} +{C} \\ $$$$\therefore\int\mathrm{cos}^{−{x}} \left(\pi\right){dx}=\frac{{i}\left(−\mathrm{1}\right)^{−{x}} }{\pi}+{C}\:\bigstar \\ $$
Answered by MrGaster last updated on 15/Feb/25
∫cos^(−x) (π)dx=((i(−1)^(−x) )/π)+C
$$\int\mathrm{cos}^{−{x}} \left(\pi\right){dx}=\frac{{i}\left(−\mathrm{1}\overset{−{x}} {\right)}}{\pi}+{C} \\ $$
Answered by Ghisom last updated on 16/Feb/25
∫(cos π)^(−x) dx=∫(−1)^(−x) dx=  =∫(cos πx −i sin πx)dx=  =(1/π)(sin πx +i cos πx) +C
$$\int\left(\mathrm{cos}\:\pi\right)^{−{x}} {dx}=\int\left(−\mathrm{1}\right)^{−{x}} {dx}= \\ $$$$=\int\left(\mathrm{cos}\:\pi{x}\:−\mathrm{i}\:\mathrm{sin}\:\pi{x}\right){dx}= \\ $$$$=\frac{\mathrm{1}}{\pi}\left(\mathrm{sin}\:\pi{x}\:+\mathrm{i}\:\mathrm{cos}\:\pi{x}\right)\:+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *