Menu Close

lim-x-3-x-1-3-x-0-




Question Number 216698 by sniper237 last updated on 16/Feb/25
lim_(x→+∞) ^3 (√(x+1)) −^3 (√x) =^?  0
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\:^{\mathrm{3}} \sqrt{{x}+\mathrm{1}}\:−^{\mathrm{3}} \sqrt{{x}}\:\overset{?} {=}\:\mathrm{0} \\ $$
Answered by MrGaster last updated on 16/Feb/25
((x+1))^(1/3) −^3 (√x)=(x+1)^(1/3) −x^(1/3)   (x+1)^(1/3) =x^(1/3) +(1/3)x^((1/3)−1) +O(x^((1/3)−2) )  (x+1)^(1/3) −x^(1/3) =x^(1/3) +(1/3)x^(−(2/3)) +O(x^(−(5/3)) )−x^(1/3)   (1/3)x^(−(2/3)) +O(x^(−(5/3)) )  lim_(x→∞^+ ) ((1/3)x^(−(2/3)) +O(x^(−(5/3)) ))=0
$$\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}−\:^{\mathrm{3}} \sqrt{{x}}=\left({x}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} −{x}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\left({x}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} ={x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\frac{\mathrm{1}}{\mathrm{3}}{x}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} +{O}\left({x}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{2}} \right) \\ $$$$\left({x}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} −{x}^{\frac{\mathrm{1}}{\mathrm{3}}} ={x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\frac{\mathrm{1}}{\mathrm{3}}{x}^{−\frac{\mathrm{2}}{\mathrm{3}}} +{O}\left({x}^{−\frac{\mathrm{5}}{\mathrm{3}}} \right)−{x}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}{x}^{−\frac{\mathrm{2}}{\mathrm{3}}} +{O}\left({x}^{−\frac{\mathrm{5}}{\mathrm{3}}} \right) \\ $$$$\underset{{x}\rightarrow\infty^{+} } {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{3}}{x}^{−\frac{\mathrm{2}}{\mathrm{3}}} +{O}\left({x}^{−\frac{\mathrm{5}}{\mathrm{3}}} \right)\right)=\mathrm{0} \\ $$
Answered by mehdee7396 last updated on 17/Feb/25
(((x+1))^(1/3) −(x)^(1/3) )=(1/( (((x+1)^2 ))^(1/3) +(((x+1)x))^(1/3) +(x^2 )^(1/3) ))  ⇒lim_(x→∞) (((x+1))^(1/3) −(x)^(1/3) )=0
$$\left(\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}−\sqrt[{\mathrm{3}}]{{x}}\right)=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }+\sqrt[{\mathrm{3}}]{\left({x}+\mathrm{1}\right){x}}+\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }} \\ $$$$\Rightarrow{li}\underset{{x}\rightarrow\infty} {{m}}\left(\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}−\sqrt[{\mathrm{3}}]{{x}}\right)=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *