Menu Close

Prove-that-3-5-2-3-5-2-1-Question-216694-reposted-for-new-answers-




Question Number 216739 by ArshadS last updated on 17/Feb/25
Prove that ^3 (√((√5)+2)) −^3 (√((√5)−2)) =1  Question#216694 reposted for new answers
$${Prove}\:{that}\:\:^{\mathrm{3}} \sqrt{\sqrt{\mathrm{5}}+\mathrm{2}}\:−^{\mathrm{3}} \sqrt{\sqrt{\mathrm{5}}−\mathrm{2}}\:=\mathrm{1} \\ $$$${Question}#\mathrm{216694}\:{reposted}\:{for}\:{new}\:{answers} \\ $$
Answered by Rasheed.Sindhi last updated on 17/Feb/25
(((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  =1  let (((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  =x  And   a=(√5) +2 , b=(√5) −2  ⇒a−b=4 , ab=1  a−b=((a)^(1/3)  )^3 −(((b ))^(1/3)  )^3             =((a)^(1/3)  −(b)^(1/3)  )(((a)^(1/3)  )^2 +((b)^(1/3)  )^2 +((a)^(1/3)  )((b)^(1/3) ))            =((a)^(1/3)  −(b)^(1/3)  )(((a)^(1/3)  −(b)^(1/3)  )^2 +3((a)^(1/3)  )((b)^(1/3) ))           4=(x)( (x)^2 +3(1) )  x^3 +3x−4=0  (x−1)(x^2 +x+4)=0  x=1 or x^2 +x+4=0⇒x∉R   proved
$$\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{5}}\:+\mathrm{2}}\:−\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{5}}\:−\mathrm{2}}\:=\mathrm{1} \\ $$$${let}\:\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{5}}\:+\mathrm{2}}\:−\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{5}}\:−\mathrm{2}}\:={x} \\ $$$${And}\:\:\:{a}=\sqrt{\mathrm{5}}\:+\mathrm{2}\:,\:{b}=\sqrt{\mathrm{5}}\:−\mathrm{2} \\ $$$$\Rightarrow{a}−{b}=\mathrm{4}\:,\:{ab}=\mathrm{1} \\ $$$${a}−{b}=\left(\sqrt[{\mathrm{3}}]{{a}}\:\right)^{\mathrm{3}} −\left(\sqrt[{\mathrm{3}}]{{b}\:}\:\right)^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\left(\sqrt[{\mathrm{3}}]{{a}}\:−\sqrt[{\mathrm{3}}]{{b}}\:\right)\left(\left(\sqrt[{\mathrm{3}}]{{a}}\:\right)^{\mathrm{2}} +\left(\sqrt[{\mathrm{3}}]{{b}}\:\right)^{\mathrm{2}} +\left(\sqrt[{\mathrm{3}}]{{a}}\:\right)\left(\sqrt[{\mathrm{3}}]{{b}}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\left(\sqrt[{\mathrm{3}}]{{a}}\:−\sqrt[{\mathrm{3}}]{{b}}\:\right)\left(\left(\sqrt[{\mathrm{3}}]{{a}}\:−\sqrt[{\mathrm{3}}]{{b}}\:\right)^{\mathrm{2}} +\mathrm{3}\left(\sqrt[{\mathrm{3}}]{{a}}\:\right)\left(\sqrt[{\mathrm{3}}]{{b}}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{4}=\left({x}\right)\left(\:\left({x}\right)^{\mathrm{2}} +\mathrm{3}\left(\mathrm{1}\right)\:\right) \\ $$$${x}^{\mathrm{3}} +\mathrm{3}{x}−\mathrm{4}=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{4}\right)=\mathrm{0} \\ $$$${x}=\mathrm{1}\:{or}\:{x}^{\mathrm{2}} +{x}+\mathrm{4}=\mathrm{0}\Rightarrow{x}\notin\mathbb{R} \\ $$$$\:{proved} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *