Menu Close

form-the-differential-equationfrom-the-following-1-y-Ae-3x-Be-5x-2-y-2-x-1-3-c-y-c-2-x-3-0-




Question Number 216787 by Engr_Jidda last updated on 20/Feb/25
form the differential equationfrom the following  1) y=Ae^(3x) +Be^(5x)   2) y^2 =(x−1)  3) c(y+c)^2 +x^3 =0
$${form}\:{the}\:{differential}\:{equationfrom}\:{the}\:{following} \\ $$$$\left.\mathrm{1}\right)\:{y}={Ae}^{\mathrm{3}{x}} +{Be}^{\mathrm{5}{x}} \\ $$$$\left.\mathrm{2}\right)\:{y}^{\mathrm{2}} =\left({x}−\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{c}\left({y}+{c}\right)^{\mathrm{2}} +{x}^{\mathrm{3}} =\mathrm{0} \\ $$
Answered by som(math1967) last updated on 20/Feb/25
 1. y=Ae^(3x) +Be^(5x)    y_1 =3Ae^(3x) +5Be^(5x)    y_2 =9Ae^(3x) +25Be^(5x)    5y_1 −y_2 =6Ae^(3x)   ∴Ae^(3x) =((5y_1 −y_2 )/6)  again y_2 −3y_1 =10Be^(5x)    ∴ Be^(5x) =((y_2 −3y_1 )/(10))  ⇒ Ae^(3x) +Be^(5x) =((5y_1 −y_2 )/6) +((y_2 −3y_1 )/(10))  ⇒y=((25y_1 −5y_2 +3y_2 −9y_1 )/(30)) [y=Ae^(3x) +Be^(5x) ]  ⇒y=((16y_1 −2y_2 )/(30))  ⇒y=((8y_1 −y_2 )/(15))   ∴ y_2 −8y_1 +15y=0
$$\:\mathrm{1}.\:{y}={Ae}^{\mathrm{3}{x}} +{Be}^{\mathrm{5}{x}} \\ $$$$\:{y}_{\mathrm{1}} =\mathrm{3}{Ae}^{\mathrm{3}{x}} +\mathrm{5}{Be}^{\mathrm{5}{x}} \\ $$$$\:{y}_{\mathrm{2}} =\mathrm{9}{Ae}^{\mathrm{3}{x}} +\mathrm{25}{Be}^{\mathrm{5}{x}} \\ $$$$\:\mathrm{5}{y}_{\mathrm{1}} −{y}_{\mathrm{2}} =\mathrm{6}{Ae}^{\mathrm{3}{x}} \\ $$$$\therefore{Ae}^{\mathrm{3}{x}} =\frac{\mathrm{5}{y}_{\mathrm{1}} −{y}_{\mathrm{2}} }{\mathrm{6}} \\ $$$${again}\:{y}_{\mathrm{2}} −\mathrm{3}{y}_{\mathrm{1}} =\mathrm{10}{Be}^{\mathrm{5}{x}} \\ $$$$\:\therefore\:{Be}^{\mathrm{5}{x}} =\frac{{y}_{\mathrm{2}} −\mathrm{3}{y}_{\mathrm{1}} }{\mathrm{10}} \\ $$$$\Rightarrow\:{Ae}^{\mathrm{3}{x}} +{Be}^{\mathrm{5}{x}} =\frac{\mathrm{5}{y}_{\mathrm{1}} −{y}_{\mathrm{2}} }{\mathrm{6}}\:+\frac{{y}_{\mathrm{2}} −\mathrm{3}{y}_{\mathrm{1}} }{\mathrm{10}} \\ $$$$\Rightarrow{y}=\frac{\mathrm{25}{y}_{\mathrm{1}} −\mathrm{5}{y}_{\mathrm{2}} +\mathrm{3}{y}_{\mathrm{2}} −\mathrm{9}{y}_{\mathrm{1}} }{\mathrm{30}}\:\left[{y}={Ae}^{\mathrm{3}{x}} +{Be}^{\mathrm{5}{x}} \right] \\ $$$$\Rightarrow{y}=\frac{\mathrm{16}{y}_{\mathrm{1}} −\mathrm{2}{y}_{\mathrm{2}} }{\mathrm{30}} \\ $$$$\Rightarrow{y}=\frac{\mathrm{8}{y}_{\mathrm{1}} −{y}_{\mathrm{2}} }{\mathrm{15}} \\ $$$$\:\therefore\:{y}_{\mathrm{2}} −\mathrm{8}{y}_{\mathrm{1}} +\mathrm{15}{y}=\mathrm{0} \\ $$
Commented by Engr_Jidda last updated on 20/Feb/25
wow thank you so much
$${wow}\:{thank}\:{you}\:{so}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *