Menu Close

Question-217417




Question Number 217417 by peter frank last updated on 13/Mar/25
Commented by mr W last updated on 13/Mar/25
for f(g(x))=(x^2 +1)^(50)  there is no  unique solution for f(x) and f(x).
$${for}\:{f}\left({g}\left({x}\right)\right)=\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{50}} \:{there}\:{is}\:{no} \\ $$$${unique}\:{solution}\:{for}\:{f}\left({x}\right)\:{and}\:{f}\left({x}\right). \\ $$
Answered by SdC355 last updated on 13/Mar/25
   (f○g)(x)=(x^2 +1)^(50)   we can renote (f○g)(x) as f(g(x))  f(g(x))=(x^2 +1)^(50)   but we can′t find f(x) and g(x).....  because it dosen′t matter if  f(x)=x^(50)  and g(x)=x^2 +1 and  f(x)=x^(25)  and g(x)=(x^2 +1)^2   So we can′t Find a specific function  f and g
$$\: \\ $$$$\left({f}\circ\mathrm{g}\right)\left({x}\right)=\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{50}} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{renote}\:\left({f}\circ\mathrm{g}\right)\left({x}\right)\:\mathrm{as}\:{f}\left(\mathrm{g}\left({x}\right)\right) \\ $$$${f}\left(\mathrm{g}\left({x}\right)\right)=\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{50}} \\ $$$$\mathrm{but}\:\mathrm{we}\:\mathrm{can}'\mathrm{t}\:\mathrm{find}\:{f}\left({x}\right)\:\mathrm{and}\:\mathrm{g}\left({x}\right)….. \\ $$$$\mathrm{because}\:\mathrm{it}\:\mathrm{dosen}'\mathrm{t}\:\mathrm{matter}\:\mathrm{if} \\ $$$${f}\left({x}\right)={x}^{\mathrm{50}} \:\mathrm{and}\:\mathrm{g}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{1}\:\mathrm{and} \\ $$$${f}\left({x}\right)={x}^{\mathrm{25}} \:\mathrm{and}\:\mathrm{g}\left({x}\right)=\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{So}\:\mathrm{we}\:\mathrm{can}'\mathrm{t}\:\mathrm{Find}\:\mathrm{a}\:\mathrm{specific}\:\mathrm{function} \\ $$$${f}\:\mathrm{and}\:\mathrm{g} \\ $$
Answered by MathematicalUser2357 last updated on 13/Mar/25
f(x)=x^(50)   g(x)=x^2 +1
$${f}\left({x}\right)={x}^{\mathrm{50}} \\ $$$${g}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *