Menu Close

Question-217431




Question Number 217431 by peter frank last updated on 13/Mar/25
Answered by Frix last updated on 13/Mar/25
Simply by parts:  u′=(1/((x+1)^2 )) → u=−(1/(x+1))  v=xe^x  → v′=(x+1)e^x   ∫u′v=uv−∫uv′  ∫((xe^x )/((x+1)^2 ))=−((xe^x )/(x+1))+∫e^x dx=...=(e^x /(x+1))+C
$$\mathrm{Simply}\:\mathrm{by}\:\mathrm{parts}: \\ $$$${u}'=\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:\rightarrow\:{u}=−\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$${v}={x}\mathrm{e}^{{x}} \:\rightarrow\:{v}'=\left({x}+\mathrm{1}\right)\mathrm{e}^{{x}} \\ $$$$\int{u}'{v}={uv}−\int{uv}' \\ $$$$\int\frac{{x}\mathrm{e}^{{x}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }=−\frac{{x}\mathrm{e}^{{x}} }{{x}+\mathrm{1}}+\int\mathrm{e}^{{x}} {dx}=…=\frac{\mathrm{e}^{{x}} }{{x}+\mathrm{1}}+{C} \\ $$
Answered by Spillover last updated on 13/Mar/25

Leave a Reply

Your email address will not be published. Required fields are marked *