Menu Close

f-R-R-f-f-x-x-2-x-1-f-0-




Question Number 217541 by hardmath last updated on 15/Mar/25
f : R → R  f(f(x)) = x^2  − x + 1  f(0) = ?
$$\mathrm{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$$\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\:=\:\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{x}\:+\:\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{0}\right)\:=\:? \\ $$
Answered by mr W last updated on 16/Mar/25
say f(0)=k  f(k)=f(f(0))=0^2 −0+1=1    replace x with f(x):  f(f(f(x)))=f^2 (x)−f(x)+1  f(x^2 −x+1)=f^2 (x)−f(x)+1  set x=0:  f(1)=f^2 (0)−f(0)+1  ⇒f(1)=k^2 −k+1    set x=1:  f(1)=f^2 (1)−f(1)+1  (f(1)−1)^2 =0  ⇒f(1)=1    k^2 −k+1=1  ⇒k(k−1)=0  ⇒k=0 or 1  if k=0, i.e. f(0)=0,   but f(k)=f(0)=1≠0  ⇒k=0 is not valid.  so k=f(0)=1 is the only solution.
$${say}\:{f}\left(\mathrm{0}\right)={k} \\ $$$${f}\left({k}\right)={f}\left({f}\left(\mathrm{0}\right)\right)=\mathrm{0}^{\mathrm{2}} −\mathrm{0}+\mathrm{1}=\mathrm{1} \\ $$$$ \\ $$$${replace}\:{x}\:{with}\:{f}\left({x}\right): \\ $$$${f}\left({f}\left({f}\left({x}\right)\right)\right)={f}^{\mathrm{2}} \left({x}\right)−{f}\left({x}\right)+\mathrm{1} \\ $$$$\underline{{f}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)={f}^{\mathrm{2}} \left({x}\right)−{f}\left({x}\right)+\mathrm{1}} \\ $$$${set}\:{x}=\mathrm{0}: \\ $$$${f}\left(\mathrm{1}\right)={f}^{\mathrm{2}} \left(\mathrm{0}\right)−{f}\left(\mathrm{0}\right)+\mathrm{1} \\ $$$$\Rightarrow{f}\left(\mathrm{1}\right)={k}^{\mathrm{2}} −{k}+\mathrm{1} \\ $$$$ \\ $$$${set}\:{x}=\mathrm{1}: \\ $$$${f}\left(\mathrm{1}\right)={f}^{\mathrm{2}} \left(\mathrm{1}\right)−{f}\left(\mathrm{1}\right)+\mathrm{1} \\ $$$$\left({f}\left(\mathrm{1}\right)−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$ \\ $$$${k}^{\mathrm{2}} −{k}+\mathrm{1}=\mathrm{1} \\ $$$$\Rightarrow{k}\left({k}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{k}=\mathrm{0}\:{or}\:\mathrm{1} \\ $$$${if}\:{k}=\mathrm{0},\:{i}.{e}.\:{f}\left(\mathrm{0}\right)=\mathrm{0},\: \\ $$$${but}\:{f}\left({k}\right)={f}\left(\mathrm{0}\right)=\mathrm{1}\neq\mathrm{0} \\ $$$$\Rightarrow{k}=\mathrm{0}\:{is}\:{not}\:{valid}. \\ $$$${so}\:{k}={f}\left(\mathrm{0}\right)=\mathrm{1}\:{is}\:{the}\:{only}\:{solution}. \\ $$
Commented by hardmath last updated on 16/Mar/25
thankyou dear professor
$$\mathrm{thankyou}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *