Menu Close

Find-a-ral-root-of-the-equation-x-3-x-1-0-by-fixed-point-iteration-method-




Question Number 217676 by Ikbal last updated on 18/Mar/25
Find a ral root of the equation x^3 −x−1=0 by fixed point iteration method
$${Find}\:{a}\:{ral}\:{root}\:{of}\:{the}\:{equation}\:{x}^{\mathrm{3}} −{x}−\mathrm{1}=\mathrm{0}\:{by}\:{fixed}\:{point}\:{iteration}\:{method} \\ $$
Answered by SdC355 last updated on 18/Mar/25
z^3 −z−1=0  z_(n+1) =z_n −((f(z_n ))/(f^((1)) (z_n )))  z_(n+1) =z_n −((z_n ^3 −z_n −1)/(3z_n ^2 −1))  z_1 =1  z_2 =(3/2)≈1.5  z_3 =(3/2)−((((27)/8)−((12)/8)−(8/8)=(7/8))/(3((9/4))−1=((27)/4)−(4/4)=((23)/4)))=(7/(2∙23))=(7/(46))  z_3 =((31)/(23))≈1.34782608696....  z_4 =((71749)/(54142))≈1.32520039895.....  ⋮  and  lim_(n→∞)  z_(n+1)  is convergence  lim_(n→∞)  z_(n+1) =(1/3)^3 (√(((27)/2)−((3(√(69)))/2)))+^3 (√((9+(√(69)))/(18)))  and  lim_(n→∞)  z_(n+1) ≈1.32471795724475.....
$${z}^{\mathrm{3}} −{z}−\mathrm{1}=\mathrm{0} \\ $$$${z}_{{n}+\mathrm{1}} ={z}_{{n}} −\frac{{f}\left({z}_{{n}} \right)}{{f}^{\left(\mathrm{1}\right)} \left({z}_{{n}} \right)} \\ $$$${z}_{{n}+\mathrm{1}} ={z}_{{n}} −\frac{{z}_{{n}} ^{\mathrm{3}} −{z}_{{n}} −\mathrm{1}}{\mathrm{3}{z}_{{n}} ^{\mathrm{2}} −\mathrm{1}} \\ $$$${z}_{\mathrm{1}} =\mathrm{1} \\ $$$${z}_{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{2}}\approx\mathrm{1}.\mathrm{5} \\ $$$${z}_{\mathrm{3}} =\frac{\mathrm{3}}{\mathrm{2}}−\frac{\frac{\mathrm{27}}{\mathrm{8}}−\frac{\mathrm{12}}{\mathrm{8}}−\frac{\mathrm{8}}{\mathrm{8}}=\frac{\mathrm{7}}{\mathrm{8}}}{\mathrm{3}\left(\frac{\mathrm{9}}{\mathrm{4}}\right)−\mathrm{1}=\frac{\mathrm{27}}{\mathrm{4}}−\frac{\mathrm{4}}{\mathrm{4}}=\frac{\mathrm{23}}{\mathrm{4}}}=\frac{\mathrm{7}}{\mathrm{2}\centerdot\mathrm{23}}=\frac{\mathrm{7}}{\mathrm{46}} \\ $$$${z}_{\mathrm{3}} =\frac{\mathrm{31}}{\mathrm{23}}\approx\mathrm{1}.\mathrm{34782608696}…. \\ $$$${z}_{\mathrm{4}} =\frac{\mathrm{71749}}{\mathrm{54142}}\approx\mathrm{1}.\mathrm{32520039895}….. \\ $$$$\vdots \\ $$$$\mathrm{and}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{z}_{{n}+\mathrm{1}} \:\mathrm{is}\:\mathrm{convergence} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{z}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{3}}\:^{\mathrm{3}} \sqrt{\frac{\mathrm{27}}{\mathrm{2}}−\frac{\mathrm{3}\sqrt{\mathrm{69}}}{\mathrm{2}}}+\:^{\mathrm{3}} \sqrt{\frac{\mathrm{9}+\sqrt{\mathrm{69}}}{\mathrm{18}}} \\ $$$$\mathrm{and}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{z}_{{n}+\mathrm{1}} \approx\mathrm{1}.\mathrm{32471795724475}….. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *