Menu Close

x-y-xy-x-2-y-2-25-x-4-y-4-




Question Number 217732 by ArshadS last updated on 19/Mar/25
 { ((x+y=xy)),((x^2 +y^2 =25)) :};  x^4 +y^4 =?
$$\begin{cases}{{x}+{y}={xy}}\\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{25}}\end{cases};\:\:{x}^{\mathrm{4}} +{y}^{\mathrm{4}} =? \\ $$
Commented by Ghisom last updated on 19/Mar/25
x^4 +y^4 =571±4(√(26))
$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\mathrm{571}\pm\mathrm{4}\sqrt{\mathrm{26}} \\ $$
Answered by Wuji last updated on 19/Mar/25
S=x+y , P=xy  (xy)^2 =P^2 =S^2   x^4 +y^4 =(x^2 +y^2 )^2 −2(xy)^2   x^4 +y^4 =(25)^2 −2S^2   =625−2S^2   x^2 +y^2 =S^2 −2P  ⇒S^2 −2S=25  S^2 =2S+25  ⇒x^4 +y^4 =625−2(2S+25)=625−4S−50  x^4 +y^4 =575−4S  from S^2 −2S−25=0  S=((2±(√((−2)^2 −4×(−25))))/2)=((2±(√(4+100)))/2) =((2±(√(104)))/2)  S=((2±2(√(26)))/2) =1±(√(26))  S =1+(√(26))   S>0  ⇒x^4 +y^4 =575−4(1+(√(26)))  x^4 +y^4 =575−4−4(√(26)))=571−4(√(26))  ∴x^4 +y^4 =571−4(√(26))
$${S}={x}+{y}\:,\:{P}={xy} \\ $$$$\left({xy}\right)^{\mathrm{2}} ={P}^{\mathrm{2}} ={S}^{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}\left({xy}\right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\left(\mathrm{25}\right)^{\mathrm{2}} −\mathrm{2}{S}^{\mathrm{2}} \:\:=\mathrm{625}−\mathrm{2}{S}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={S}^{\mathrm{2}} −\mathrm{2}{P}\:\:\Rightarrow{S}^{\mathrm{2}} −\mathrm{2}{S}=\mathrm{25} \\ $$$${S}^{\mathrm{2}} =\mathrm{2}{S}+\mathrm{25} \\ $$$$\Rightarrow{x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\mathrm{625}−\mathrm{2}\left(\mathrm{2}{S}+\mathrm{25}\right)=\mathrm{625}−\mathrm{4}{S}−\mathrm{50} \\ $$$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\mathrm{575}−\mathrm{4}{S} \\ $$$${from}\:{S}^{\mathrm{2}} −\mathrm{2}{S}−\mathrm{25}=\mathrm{0} \\ $$$${S}=\frac{\mathrm{2}\pm\sqrt{\left(−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}×\left(−\mathrm{25}\right)}}{\mathrm{2}}=\frac{\mathrm{2}\pm\sqrt{\mathrm{4}+\mathrm{100}}}{\mathrm{2}}\:=\frac{\mathrm{2}\pm\sqrt{\mathrm{104}}}{\mathrm{2}} \\ $$$${S}=\frac{\mathrm{2}\pm\mathrm{2}\sqrt{\mathrm{26}}}{\mathrm{2}}\:=\mathrm{1}\pm\sqrt{\mathrm{26}} \\ $$$${S}\:=\mathrm{1}+\sqrt{\mathrm{26}}\:\:\:{S}>\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\mathrm{575}−\mathrm{4}\left(\mathrm{1}+\sqrt{\mathrm{26}}\right) \\ $$$$\left.{x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\mathrm{575}−\mathrm{4}−\mathrm{4}\sqrt{\mathrm{26}}\right)=\mathrm{571}−\mathrm{4}\sqrt{\mathrm{26}} \\ $$$$\therefore{x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\mathrm{571}−\mathrm{4}\sqrt{\mathrm{26}} \\ $$
Commented by ArshadS last updated on 22/Mar/25
Thanks a lot!
$${Thanks}\:{a}\:{lot}! \\ $$
Answered by Rasheed.Sindhi last updated on 19/Mar/25
x^2 +y^2 =25  ⇒(x+y)^2 −2xy=25  ⇒(x+y)^2 −2(x+y)=25  ⇒(x+y)^2 −2(x+y)−25=0  x+y=xy=((2±(√(4+100)))/2)=1±(√(26))   (x^2 +y^2 )^2 =25^2   x^4 +y^4 +2(xy)^2 =625  x^4 +y^4 =625−2(1±(√(26)) )^2                =625−2(1+26±2(√(26)) )           =625−54∓4(√(26))            =571∓4(√(26))            =571±4(√(26))
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{25} \\ $$$$\Rightarrow\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{2}{xy}=\mathrm{25} \\ $$$$\Rightarrow\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{2}\left({x}+{y}\right)=\mathrm{25} \\ $$$$\Rightarrow\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{2}\left({x}+{y}\right)−\mathrm{25}=\mathrm{0} \\ $$$${x}+{y}={xy}=\frac{\mathrm{2}\pm\sqrt{\mathrm{4}+\mathrm{100}}}{\mathrm{2}}=\mathrm{1}\pm\sqrt{\mathrm{26}}\: \\ $$$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{25}^{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} +\mathrm{2}\left({xy}\right)^{\mathrm{2}} =\mathrm{625} \\ $$$${x}^{\mathrm{4}} +{y}^{\mathrm{4}} =\mathrm{625}−\mathrm{2}\left(\mathrm{1}\pm\sqrt{\mathrm{26}}\:\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{625}−\mathrm{2}\left(\mathrm{1}+\mathrm{26}\pm\mathrm{2}\sqrt{\mathrm{26}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{625}−\mathrm{54}\mp\mathrm{4}\sqrt{\mathrm{26}}\: \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{571}\mp\mathrm{4}\sqrt{\mathrm{26}}\: \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{571}\pm\mathrm{4}\sqrt{\mathrm{26}}\: \\ $$
Commented by ArshadS last updated on 22/Mar/25
Thanks sir!
$${Thanks}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *