Menu Close

a-b-c-gt-0-ab-ac-bc-1-Prove-that-a-3-a-b-3-b-c-3-c-2-a-b-c-




Question Number 217872 by hardmath last updated on 22/Mar/25
a , b , c > 0  ab + ac + bc = 1  Prove that:  (√(a^3  + a))  +  (√(b^3  + b))  +  (√(c^3  + c))  ≥ 2 (√(a + b + c))
$$\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{c}\:>\:\mathrm{0} \\ $$$$\mathrm{ab}\:+\:\mathrm{ac}\:+\:\mathrm{bc}\:=\:\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\sqrt{\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{a}}\:\:+\:\:\sqrt{\mathrm{b}^{\mathrm{3}} \:+\:\mathrm{b}}\:\:+\:\:\sqrt{\mathrm{c}^{\mathrm{3}} \:+\:\mathrm{c}}\:\:\geqslant\:\mathrm{2}\:\sqrt{\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *