Menu Close

Question-217897




Question Number 217897 by Unhombre last updated on 23/Mar/25
Commented by Hanuda354 last updated on 23/Mar/25
A=?
$${A}=? \\ $$
Commented by Unhombre last updated on 23/Mar/25
A = 0/5243 and a straight line above it  meaning 0/52435243...
$${A}\:=\:\mathrm{0}/\mathrm{5243}\:{and}\:{a}\:{straight}\:{line}\:{above}\:{it} \\ $$$${meaning}\:\mathrm{0}/\mathrm{52435243}… \\ $$
Commented by mr W last updated on 23/Mar/25
B_1 =5343  B_2 =52435243  ...  B_n =52435243...5243_(n times 5343)   lim_(n→∞) B_n =∞  A=(0/(lim_(n→∞) B_n ))=0  ⇒(9/(10A−5))=−(9/5)
$${B}_{\mathrm{1}} =\mathrm{5343} \\ $$$${B}_{\mathrm{2}} =\mathrm{52435243} \\ $$$$… \\ $$$${B}_{{n}} =\underset{{n}\:{times}\:\mathrm{5343}} {\mathrm{52435243}…\mathrm{5243}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{B}_{{n}} =\infty \\ $$$${A}=\frac{\mathrm{0}}{\underset{{n}\rightarrow\infty} {\mathrm{lim}}{B}_{{n}} }=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{9}}{\mathrm{10}{A}−\mathrm{5}}=−\frac{\mathrm{9}}{\mathrm{5}} \\ $$
Commented by mr W last updated on 23/Mar/25
you could also give A=1/5243^(−) , or  A=12345/5243^(−) , etc.
$${you}\:{could}\:{also}\:{give}\:{A}=\mathrm{1}/\overline {\mathrm{5243}},\:{or} \\ $$$${A}=\mathrm{12345}/\overline {\mathrm{5243}},\:{etc}. \\ $$
Commented by Unhombre last updated on 23/Mar/25
thanks but the options are:  27  37  38  39
$${thanks}\:{but}\:{the}\:{options}\:{are}: \\ $$$$\mathrm{27} \\ $$$$\mathrm{37} \\ $$$$\mathrm{38} \\ $$$$\mathrm{39} \\ $$
Commented by mr W last updated on 23/Mar/25
then the question is wrong or the  answer given is wrong.    if it is meant A=0.5243^(−) , then  10000A=5243+A  A=((5243)/(9999))  (9/(10A−5))=(9/(10×((5243)/(9999))−5))≈37
$${then}\:{the}\:{question}\:{is}\:{wrong}\:{or}\:{the} \\ $$$${answer}\:{given}\:{is}\:{wrong}. \\ $$$$ \\ $$$${if}\:{it}\:{is}\:{meant}\:{A}=\mathrm{0}.\overline {\mathrm{5243}},\:{then} \\ $$$$\mathrm{10000}{A}=\mathrm{5243}+{A} \\ $$$${A}=\frac{\mathrm{5243}}{\mathrm{9999}} \\ $$$$\frac{\mathrm{9}}{\mathrm{10}{A}−\mathrm{5}}=\frac{\mathrm{9}}{\mathrm{10}×\frac{\mathrm{5243}}{\mathrm{9999}}−\mathrm{5}}\approx\mathrm{37} \\ $$
Commented by Unhombre last updated on 23/Mar/25
yeah the answer is exactly 37  thanks
$${yeah}\:{the}\:{answer}\:{is}\:{exactly}\:\mathrm{37} \\ $$$${thanks} \\ $$
Answered by mahdipoor last updated on 23/Mar/25
A=0.5243(1+10^(−4) +10^(−8) +10^(−12) +...)×((1−10^(−4) )/(1−10^(−4) ))  0.5243((1−10^(−∞) )/(1−10^(−4) ))    (=((5243)/(9999))=)  (9/(10A−5))=((89991)/(2435))≈36.96
$${A}=\mathrm{0}.\mathrm{5243}\left(\mathrm{1}+\mathrm{10}^{−\mathrm{4}} +\mathrm{10}^{−\mathrm{8}} +\mathrm{10}^{−\mathrm{12}} +…\right)×\frac{\mathrm{1}−\mathrm{10}^{−\mathrm{4}} }{\mathrm{1}−\mathrm{10}^{−\mathrm{4}} } \\ $$$$\mathrm{0}.\mathrm{5243}\frac{\mathrm{1}−\mathrm{10}^{−\infty} }{\mathrm{1}−\mathrm{10}^{−\mathrm{4}} }\:\:\:\:\left(=\frac{\mathrm{5243}}{\mathrm{9999}}=\right) \\ $$$$\frac{\mathrm{9}}{\mathrm{10}{A}−\mathrm{5}}=\frac{\mathrm{89991}}{\mathrm{2435}}\approx\mathrm{36}.\mathrm{96} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *