Menu Close

Solve-If-4-2-2y-1-16-4-y-1-and-8-3-2x-1-2-9-2-x-what-is-2x-y-




Question Number 217982 by Unhombre last updated on 24/Mar/25
Solve  If 4^2^(2y−1 )  = 16^4^(y+1)   and 8^3^(2x−1)  = 2^9^(2−x)    what is 2x + y?
$${Solve} \\ $$$${If}\:\mathrm{4}^{\mathrm{2}^{\mathrm{2}{y}−\mathrm{1}\:} } =\:\mathrm{16}^{\mathrm{4}^{{y}+\mathrm{1}} } \:{and}\:\mathrm{8}^{\mathrm{3}^{\mathrm{2}{x}−\mathrm{1}} } =\:\mathrm{2}^{\mathrm{9}^{\mathrm{2}−{x}} } \\ $$$${what}\:{is}\:\mathrm{2}{x}\:+\:{y}? \\ $$
Commented by mr W last updated on 25/Mar/25
if 4^2^(2y−1)  =16^4^(y+1)  , then  2^(2y−1) =2×4^(y+1) =2×2^(2(y+1)) =2^(2(y+1)+1)   ⇒2y−1=2(y+1)+1  ⇒2y−1=2y+2+1  ⇒−1=3  ???  ⇒ no such y∈R exists!   ⇒question is wrong!
$${if}\:\mathrm{4}^{\mathrm{2}^{\mathrm{2}{y}−\mathrm{1}} } =\mathrm{16}^{\mathrm{4}^{{y}+\mathrm{1}} } ,\:{then} \\ $$$$\mathrm{2}^{\mathrm{2}{y}−\mathrm{1}} =\mathrm{2}×\mathrm{4}^{{y}+\mathrm{1}} =\mathrm{2}×\mathrm{2}^{\mathrm{2}\left({y}+\mathrm{1}\right)} =\mathrm{2}^{\mathrm{2}\left({y}+\mathrm{1}\right)+\mathrm{1}} \\ $$$$\Rightarrow\mathrm{2}{y}−\mathrm{1}=\mathrm{2}\left({y}+\mathrm{1}\right)+\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}{y}−\mathrm{1}=\mathrm{2}{y}+\mathrm{2}+\mathrm{1} \\ $$$$\Rightarrow−\mathrm{1}=\mathrm{3}\:\:??? \\ $$$$\Rightarrow\:{no}\:{such}\:{y}\in{R}\:{exists}!\: \\ $$$$\Rightarrow{question}\:{is}\:{wrong}! \\ $$
Commented by Unhombre last updated on 25/Mar/25
I think so because whatever formula I  used the answer would be invalid  Thanks
$${I}\:{think}\:{so}\:{because}\:{whatever}\:{formula}\:{I} \\ $$$${used}\:{the}\:{answer}\:{would}\:{be}\:{invalid} \\ $$$${Thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *