Menu Close

if-x-2-y-2-z-2-1-maximum-value-xy-2yz-




Question Number 218005 by jacklau last updated on 25/Mar/25
       if x^2 +y^2 +z^2 =1,    maximum value xy+2yz = ...
$$\: \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} +\boldsymbol{\mathrm{z}}^{\mathrm{2}} =\mathrm{1},\: \\ $$$$\:\boldsymbol{\mathrm{maximum}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{x}}\mathrm{y}+\mathrm{2yz}\:=\:… \\ $$
Commented by Ghisom last updated on 26/Mar/25
I get  −((√5)/2)≤(x+2z)y≤((√5)/2)
$$\mathrm{I}\:\mathrm{get} \\ $$$$−\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\leqslant\left({x}+\mathrm{2}{z}\right){y}\leqslant\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 26/Mar/25
yes. this is correct. maximum is at  x=(1/( (√(10)))), y=(1/( (√2))), z=(2/( (√(10))))
$${yes}.\:{this}\:{is}\:{correct}.\:{maximum}\:{is}\:{at} \\ $$$${x}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{10}}},\:{y}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\:{z}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{10}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *