Menu Close

Solve-x-2-y-2-xy-19-x-y-5-




Question Number 218036 by dscm last updated on 26/Mar/25
Solve   x^2  + y^2  + xy = 19    x + y= 5
$${Solve} \\ $$$$\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{xy}\:=\:\mathrm{19}\: \\ $$$$\:\mathrm{x}\:+\:\mathrm{y}=\:\mathrm{5} \\ $$
Answered by Hanuda354 last updated on 26/Mar/25
 x^2  + y^2  + xy = 19   (x+y)^2  − xy = 19              5^2  − xy = 19             25 − xy = 19                   ⇔ xy = 6    Then  we get:    (x,y) = (2,3),(3,2)
$$\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{xy}\:=\:\mathrm{19}\: \\ $$$$\left({x}+{y}\right)^{\mathrm{2}} \:−\:{xy}\:=\:\mathrm{19} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}^{\mathrm{2}} \:−\:{xy}\:=\:\mathrm{19} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{25}\:−\:{xy}\:=\:\mathrm{19} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Leftrightarrow\:{xy}\:=\:\mathrm{6} \\ $$$$ \\ $$$$\mathrm{Then}\:\:\mathrm{we}\:\mathrm{get}: \\ $$$$\:\:\left({x},{y}\right)\:=\:\left(\mathrm{2},\mathrm{3}\right),\left(\mathrm{3},\mathrm{2}\right) \\ $$
Answered by dscm last updated on 26/Mar/25
 x^2  + y^2  + xy = 19 ....(i)   x + y= 5......(ii)  (ii)⇒x^2 +y^2 +2xy=25....(iii)  (iii)−(i): xy=6  Let x & y are the roots of a quadratic equation  ∵ x+y=5 & xy=6  ∴ The equation may be t^2 −(x+y)t+xy=0  Or t^2 −5t+6=0⇒t=2,3  ∴ (x=2 ∧ y=3) ∨ (x=3 ∧ y=2)
$$\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{xy}\:=\:\mathrm{19}\:….\left({i}\right) \\ $$$$\:\mathrm{x}\:+\:\mathrm{y}=\:\mathrm{5}……\left({ii}\right) \\ $$$$\left({ii}\right)\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{2xy}=\mathrm{25}….\left({iii}\right) \\ $$$$\left({iii}\right)−\left({i}\right):\:\mathrm{xy}=\mathrm{6} \\ $$$${Let}\:\mathrm{x}\:\&\:\mathrm{y}\:{are}\:{the}\:{roots}\:{of}\:{a}\:{quadratic}\:{equation} \\ $$$$\because\:\mathrm{x}+\mathrm{y}=\mathrm{5}\:\&\:\mathrm{xy}=\mathrm{6} \\ $$$$\therefore\:\mathcal{T}{he}\:{equation}\:{may}\:{be}\:{t}^{\mathrm{2}} −\left({x}+{y}\right){t}+{xy}=\mathrm{0} \\ $$$${Or}\:{t}^{\mathrm{2}} −\mathrm{5}{t}+\mathrm{6}=\mathrm{0}\Rightarrow{t}=\mathrm{2},\mathrm{3} \\ $$$$\therefore\:\left(\mathrm{x}=\mathrm{2}\:\wedge\:\mathrm{y}=\mathrm{3}\right)\:\vee\:\left(\mathrm{x}=\mathrm{3}\:\wedge\:\mathrm{y}=\mathrm{2}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *