Menu Close

find-x-y-z-such-as-x-y-z-1-x-2-y-2-z-2-9-1-x-1-y-1-z-1-




Question Number 218041 by Mamadi last updated on 26/Mar/25
find (x,y,z)/such as  (x+y+z=1  (x^2 +y^2 +z^2  =9  ((1/x)+(1/y)+(1/z)=1
$${find}\:\left({x},{y},{z}\right)/{such}\:{as} \\ $$$$\left({x}+{y}+{z}=\mathrm{1}\right. \\ $$$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:=\mathrm{9}\right. \\ $$$$\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\mathrm{1}\right. \\ $$
Answered by vnm last updated on 27/Mar/25
x^2 +y^2 +z^2 +2xy+2xz+2yz=1  xy+xz+yz=((1−9)/2)=−4  ((xy+xz+yz)/(xyz))=1  xyz=−4  (t−x)(t−y)(t−z)=  t^3 −(x+y+z)t^2 +(xy+xz+yz)t−xyz  x,y,z are the roots of t^3 −t^2 −4t+4=0  t^2 (t−1)−4(t−1)=0  (t−2)(t+2)(t−1)=0  {1, 2, −2} and all other permutations  of  these three numbers.
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{2}{xz}+\mathrm{2}{yz}=\mathrm{1} \\ $$$${xy}+{xz}+{yz}=\frac{\mathrm{1}−\mathrm{9}}{\mathrm{2}}=−\mathrm{4} \\ $$$$\frac{{xy}+{xz}+{yz}}{{xyz}}=\mathrm{1} \\ $$$${xyz}=−\mathrm{4} \\ $$$$\left({t}−{x}\right)\left({t}−{y}\right)\left({t}−{z}\right)= \\ $$$${t}^{\mathrm{3}} −\left({x}+{y}+{z}\right){t}^{\mathrm{2}} +\left({xy}+{xz}+{yz}\right){t}−{xyz} \\ $$$${x},{y},{z}\:{are}\:{the}\:{roots}\:{of}\:{t}^{\mathrm{3}} −{t}^{\mathrm{2}} −\mathrm{4}{t}+\mathrm{4}=\mathrm{0} \\ $$$${t}^{\mathrm{2}} \left({t}−\mathrm{1}\right)−\mathrm{4}\left({t}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({t}−\mathrm{2}\right)\left({t}+\mathrm{2}\right)\left({t}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\left\{\mathrm{1},\:\mathrm{2},\:−\mathrm{2}\right\}\:{and}\:{all}\:{other}\:{permutations} \\ $$$${of}\:\:{these}\:{three}\:{numbers}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *