Question Number 218162 by Ismoiljon_008 last updated on 31/Mar/25

$$\:\:\: \\ $$$$\:\:\:{Each}\:{edge}\:{of}\:{a}\:{parallelepiped}\:{is}\:\mathrm{1}\:{cm}\:{long}. \\ $$$$\:\:\:{At}\:{one}\:{of}\:{its}\:{vertices},\:{all}\:{three}\:{face}\:{angles} \\ $$$$\:\:\:{are}\:{acute},\:{and}\:{each}\:{measures}\:\mathrm{2}\alpha. \\ $$$$\:\:\:{Find}\:{the}\:{volume}\:{of}\:{the}\:{parallepiped}. \\ $$$$\:\:\:{Help}\:{me},\:\:{please} \\ $$
Answered by mr W last updated on 31/Mar/25

Commented by mr W last updated on 31/Mar/25

$${a}={b}={c}=\mathrm{1} \\ $$$${base}\:{area}\:{A}_{{Base}} ={ab}\:\mathrm{sin}\:\mathrm{2}\alpha=\mathrm{sin}\:\mathrm{2}\alpha \\ $$$${h}=\sqrt{\mathrm{1}^{\mathrm{2}} −\left(\frac{\mathrm{1}×\mathrm{cos}\:\mathrm{2}\alpha}{\mathrm{cos}\:\alpha}\right)^{\mathrm{2}} }=\sqrt{\mathrm{1}−\frac{\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}\alpha}{\mathrm{cos}^{\mathrm{2}} \:\alpha}} \\ $$$${V}={A}_{{Base}} {h}=\mathrm{sin}\:\mathrm{2}\alpha\sqrt{\mathrm{1}−\frac{\mathrm{cos}^{\mathrm{2}} \:\mathrm{2}\alpha}{\mathrm{cos}^{\mathrm{2}} \:\alpha}}=\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\alpha \\ $$
Commented by Ismoiljon_008 last updated on 31/Mar/25

$$\:\:\:{Thank}\:{you}\:{very}\:{much} \\ $$
Commented by Ismoiljon_008 last updated on 31/Mar/25

$$\:\:\:{Mr}\:\mathbb{W},\:\:{why}\:{is}\:{the}\:{length}\:{of}\:{AD}\:{equal} \\ $$$$\:\:\:{to}\:\:\frac{\mathrm{1}\centerdot{cos}\mathrm{2}\alpha}{{cos}\alpha}\:\:?\: \\ $$$$ \\ $$
Commented by mr W last updated on 31/Mar/25

$${AC}={AB}\:\mathrm{cos}\:\mathrm{2}\alpha=\mathrm{1}×\mathrm{cos}\:\mathrm{2}\alpha \\ $$$${AD}=\frac{{AC}}{\mathrm{cos}\:\alpha}=\frac{\mathrm{1}×\mathrm{cos}\:\mathrm{2}\alpha}{\mathrm{cos}\:\alpha} \\ $$
Commented by Ismoiljon_008 last updated on 31/Mar/25

$$\:\:\:{I}\:{got}\:{it}.\:{Thank}\:{you}\:{Mr}\:\mathbb{W}\: \\ $$$$ \\ $$
Commented by mr W last updated on 31/Mar/25

$${the}\:{general}\:{formula}: \\ $$
Commented by mr W last updated on 31/Mar/25

Commented by Ismoiljon_008 last updated on 01/Apr/25

$$\:\:\:{Thanks} \\ $$