Menu Close

Question-218262




Question Number 218262 by hardmath last updated on 03/Apr/25
Commented by hardmath last updated on 03/Apr/25
ABCD - Rectangular  AK ⊥ BM  S_(△AKB)  = S_(△BMC)  = S_(AKMD)   DM = a  Prove that:   BC = a (√5)
$$\mathrm{ABCD}\:-\:\mathrm{Rectangular} \\ $$$$\mathrm{AK}\:\bot\:\mathrm{BM} \\ $$$$\mathrm{S}_{\bigtriangleup\boldsymbol{\mathrm{AKB}}} \:=\:\mathrm{S}_{\bigtriangleup\boldsymbol{\mathrm{BMC}}} \:=\:\mathrm{S}_{\boldsymbol{\mathrm{AKMD}}} \\ $$$$\mathrm{DM}\:=\:\boldsymbol{\mathrm{a}} \\ $$$$\mathrm{Prove}\:\mathrm{that}:\:\:\:\mathrm{BC}\:=\:\boldsymbol{\mathrm{a}}\:\sqrt{\mathrm{5}} \\ $$
Answered by mr W last updated on 04/Apr/25
say MC=x, BC=y  say S=area of ABCD  S=(a+x)y  ((xy)/2)=(S/3)=(((a+x)y)/3)  ⇒x=2a  S_(AKB) =S_(MCB)    ⇒AB=MB  ⇒a+x=(√(x^2 +y^2 ))  ⇒a+2a=(√(4a^2 +y^2 ))  ⇒y=(√5)a ✓
$${say}\:{MC}={x},\:{BC}={y} \\ $$$${say}\:{S}={area}\:{of}\:{ABCD} \\ $$$${S}=\left({a}+{x}\right){y} \\ $$$$\frac{{xy}}{\mathrm{2}}=\frac{{S}}{\mathrm{3}}=\frac{\left({a}+{x}\right){y}}{\mathrm{3}} \\ $$$$\Rightarrow{x}=\mathrm{2}{a} \\ $$$${S}_{{AKB}} ={S}_{{MCB}} \: \\ $$$$\Rightarrow{AB}={MB} \\ $$$$\Rightarrow{a}+{x}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\Rightarrow{a}+\mathrm{2}{a}=\sqrt{\mathrm{4}{a}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\Rightarrow{y}=\sqrt{\mathrm{5}}{a}\:\checkmark \\ $$
Commented by mehdee7396 last updated on 05/Apr/25
  thank you.i understand  ▶  ∠ABK=∠BMC   ◂
$$ \\ $$$${thank}\:{you}.{i}\:{understand} \\ $$$$\blacktriangleright\:\:\angle{ABK}=\angle{BMC}\:\:\:\blacktriangleleft \\ $$$$ \\ $$
Commented by hardmath last updated on 04/Apr/25
thankyou dear professor
$$\mathrm{thankyou}\:\mathrm{dear}\:\mathrm{professor} \\ $$
Commented by mehdee7396 last updated on 05/Apr/25
  ⇒? AB=MB
$$ \\ $$$$\Rightarrow?\:{AB}={MB} \\ $$
Commented by hardmath last updated on 05/Apr/25
thank you dear professor
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$
Commented by mr W last updated on 05/Apr/25
Commented by mr W last updated on 05/Apr/25
if both triangles are similar, then  (a_1 /a_2 )=(b_1 /b_2 )=(c_1 /c_2 )  (S_1 /S_2 )=((a_1 /a_2 ))^2 =((b_1 /b_2 ))^2 =((c_1 /c_2 ))^2
$${if}\:{both}\:{triangles}\:{are}\:{similar},\:{then} \\ $$$$\frac{{a}_{\mathrm{1}} }{{a}_{\mathrm{2}} }=\frac{{b}_{\mathrm{1}} }{{b}_{\mathrm{2}} }=\frac{{c}_{\mathrm{1}} }{{c}_{\mathrm{2}} } \\ $$$$\frac{{S}_{\mathrm{1}} }{{S}_{\mathrm{2}} }=\left(\frac{{a}_{\mathrm{1}} }{{a}_{\mathrm{2}} }\right)^{\mathrm{2}} =\left(\frac{{b}_{\mathrm{1}} }{{b}_{\mathrm{2}} }\right)^{\mathrm{2}} =\left(\frac{{c}_{\mathrm{1}} }{{c}_{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$
Commented by mr W last updated on 05/Apr/25
∠ABK=∠MBC  ⇒ΔABK∼ΔMBC  S_(ΔABK) =S_(ΔMBC)   ⇒AK=BC, KB=CM, AB=BM  note: if two similar triangles have  equal area, then they also have equal  side lengthes.
$$\angle{ABK}=\angle{MBC} \\ $$$$\Rightarrow\Delta{ABK}\sim\Delta{MBC} \\ $$$${S}_{\Delta{ABK}} ={S}_{\Delta{MBC}} \\ $$$$\Rightarrow{AK}={BC},\:{KB}={CM},\:{AB}={BM} \\ $$$${note}:\:{if}\:{two}\:{similar}\:{triangles}\:{have} \\ $$$${equal}\:{area},\:{then}\:{they}\:{also}\:{have}\:{equal} \\ $$$${side}\:{lengthes}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *