Question Number 218364 by hardmath last updated on 08/Apr/25

$$\mathrm{Let}\:\:\:\boldsymbol{\lambda}>\mathrm{0}\:\:\:\mathrm{fixed} \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{the}\:\mathrm{system}:\:\:\:\begin{cases}{\mathrm{x}^{\mathrm{2}} \:ā\:\mathrm{yz}\:=\:\lambda^{\mathrm{2}} }\\{\mathrm{y}^{\mathrm{2}} \:ā\:\mathrm{zx}\:=\:\mathrm{7}\lambda^{\mathrm{2}} }\\{\mathrm{z}^{\mathrm{2}} \:ā\:\mathrm{xy}\:=\:ā\mathrm{5}\lambda^{\mathrm{2}} }\end{cases} \\ $$
Answered by vnm last updated on 08/Apr/25

$${y}^{\mathrm{2}} ā{x}^{\mathrm{2}} +{z}\left({y}ā{x}\right)=\mathrm{6}\lambda^{\mathrm{2}} \\ $$$$\left({x}+{y}+{z}\right)\left({y}ā{x}\right)=\mathrm{6}\lambda^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} ā{y}^{\mathrm{2}} +{x}\left({z}ā{y}\right)=ā\mathrm{12}\lambda^{\mathrm{2}} \\ $$$$\left({x}+{y}+{z}\right)\left({z}ā{y}\right)=ā\mathrm{12}\lambda^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} ā{z}^{\mathrm{2}} +{y}\left({x}ā{z}\right)=\mathrm{6}\lambda^{\mathrm{2}} \\ $$$$\left({x}+{y}+{z}\right)\left({x}ā{z}\right)=\mathrm{6}\lambda^{\mathrm{2}} \\ $$$${y}ā{x}={x}ā{z} \\ $$$${y}+{z}=\mathrm{2}{x} \\ $$$${y}=\left(\mathrm{1}+{t}\right){x} \\ $$$${z}=\left(\mathrm{1}ā{t}\right){x} \\ $$$$\mathrm{3}{x}\centerdot{tx}=\mathrm{6}\lambda^{\mathrm{2}} \\ $$$${x}=\lambda\sqrt{\frac{\mathrm{2}}{{t}}} \\ $$$${y}=\lambda\left(\mathrm{1}+{t}\right)\sqrt{\frac{\mathrm{2}}{{t}}} \\ $$$${z}=\lambda\left(\mathrm{1}ā{t}\right)\sqrt{\frac{\mathrm{2}}{{t}}} \\ $$$${x}^{\mathrm{2}} ā{yz}=\lambda^{\mathrm{2}} \\ $$$$\lambda^{\mathrm{2}} \frac{\mathrm{2}}{{t}}ā\lambda^{\mathrm{2}} \left(\mathrm{1}ā{t}^{\mathrm{2}} \right)\frac{\mathrm{2}}{{t}}=\lambda^{\mathrm{2}} \\ $$$$\frac{\mathrm{2}}{{t}}ā\left(\mathrm{1}ā{t}^{\mathrm{2}} \right)\frac{\mathrm{2}}{{t}}=\mathrm{1} \\ $$$$\mathrm{2}{t}=\mathrm{1} \\ $$$${t}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${x}=\mathrm{2}\lambda,\:\:\:{y}=\mathrm{3}\lambda,\:\:\:{z}=\lambda \\ $$
Commented by hardmath last updated on 09/Apr/25

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$