Menu Close

Let-a-gt-1-fixed-Solve-for-real-numbers-the-system-a-x-2-x-ay-2-a-y-2-y-az-2-a-z-2-z-ax-2-




Question Number 218504 by hardmath last updated on 10/Apr/25
Let   a>1   fixed  Solve for real numbers the system   { ((a^x   +  2^x   =  ay + 2)),((a^y   +  2^y   =  az  +  2)),((a^z   +  2^z   =  ax  +  2)) :}
$$\mathrm{Let}\:\:\:\mathrm{a}>\mathrm{1}\:\:\:\mathrm{fixed} \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{the}\:\mathrm{system} \\ $$$$\begin{cases}{\mathrm{a}^{\boldsymbol{\mathrm{x}}} \:\:+\:\:\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:\:=\:\:\mathrm{ay}\:+\:\mathrm{2}}\\{\mathrm{a}^{\boldsymbol{\mathrm{y}}} \:\:+\:\:\mathrm{2}^{\boldsymbol{\mathrm{y}}} \:\:=\:\:\mathrm{az}\:\:+\:\:\mathrm{2}}\\{\mathrm{a}^{\boldsymbol{\mathrm{z}}} \:\:+\:\:\mathrm{2}^{\boldsymbol{\mathrm{z}}} \:\:=\:\:\mathrm{ax}\:\:+\:\:\mathrm{2}}\end{cases}\: \\ $$
Answered by vnm last updated on 11/Apr/25
Suppose y>x.  Then a^y +2^y >a^x +2^x ⇒  az+2>ay+2⇒z>y⇒  a^z +2^z >a^y +2^y >a^x +2^x >ax+2  because a^x +2^x =ay+2 & y>x.  Contradiction with the third equation.  Similar reasoning for the case y<x,   so the only possible case is x=y=z.  (d^2 /dx^2 )(a^x +2^x )>0 ∀x ⇒ equation a^x +2^x =ax+2 cannot have more than two roots.  x_1 =y_1 =z_1 =0, x_2 =y_2 =z_2 =1
$${Suppose}\:{y}>{x}. \\ $$$${Then}\:{a}^{{y}} +\mathrm{2}^{{y}} >{a}^{{x}} +\mathrm{2}^{{x}} \Rightarrow \\ $$$${az}+\mathrm{2}>{ay}+\mathrm{2}\Rightarrow{z}>{y}\Rightarrow \\ $$$${a}^{{z}} +\mathrm{2}^{{z}} >{a}^{{y}} +\mathrm{2}^{{y}} >{a}^{{x}} +\mathrm{2}^{{x}} >{ax}+\mathrm{2} \\ $$$${because}\:{a}^{{x}} +\mathrm{2}^{{x}} ={ay}+\mathrm{2}\:\&\:{y}>{x}. \\ $$$${Contradiction}\:{with}\:{the}\:{third}\:{equation}. \\ $$$${Similar}\:{reasoning}\:{for}\:{the}\:{case}\:{y}<{x},\: \\ $$$${so}\:{the}\:{only}\:{possible}\:{case}\:{is}\:{x}={y}={z}. \\ $$$$\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left({a}^{{x}} +\mathrm{2}^{{x}} \right)>\mathrm{0}\:\forall{x}\:\Rightarrow\:{equation}\:{a}^{{x}} +\mathrm{2}^{{x}} ={ax}+\mathrm{2}\:{cannot}\:{have}\:{more}\:{than}\:{two}\:{roots}. \\ $$$${x}_{\mathrm{1}} ={y}_{\mathrm{1}} ={z}_{\mathrm{1}} =\mathrm{0},\:{x}_{\mathrm{2}} ={y}_{\mathrm{2}} ={z}_{\mathrm{2}} =\mathrm{1} \\ $$
Commented by hardmath last updated on 11/Apr/25
thankyou dear professor
$$\mathrm{thankyou}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *