Menu Close

solve-the-equation-1-X-6-1-0-2-X-4-X-2-1-0-




Question Number 218485 by Mamadi last updated on 11/Apr/25
solve the equation  1)   X^6 −1=0  2)  X^4 +X^2 +1=0
$${solve}\:{the}\:{equation} \\ $$$$\left.\mathrm{1}\right)\:\:\:{X}^{\mathrm{6}} −\mathrm{1}=\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:\:{X}^{\mathrm{4}} +{X}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$
Answered by Rasheed.Sindhi last updated on 11/Apr/25
(1)   x^6 −1=0  (2)  x^4 +x^2 +1=0 unnecessary  (1)⇒(x+1)(x−1)(x^2 +x+1)(x^2 −x+1)=0  x+1=0∨ x−1=0 ∨ x^2 +x+1=0 ∨ x^2 +x+1=0  x=−1∨ x=1 ∨ x= ((−1±(√(1−4)))/2) ∨ x=((1±(√(1−4)))/2)  x=−1∨ x=1 ∨ x= ((−1±i(√3))/2) ∨ x=((1±i(√3))/2)  x=1,ω,ω^2 ,−1,−ω,−ω^2
$$\left(\mathrm{1}\right)\:\:\:{x}^{\mathrm{6}} −\mathrm{1}=\mathrm{0}\:\:\left(\mathrm{2}\right)\:\:{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0}\:{unnecessary} \\ $$$$\left(\mathrm{1}\right)\Rightarrow\left({x}+\mathrm{1}\right)\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$${x}+\mathrm{1}=\mathrm{0}\vee\:{x}−\mathrm{1}=\mathrm{0}\:\vee\:{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}\:\vee\:{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0} \\ $$$${x}=−\mathrm{1}\vee\:{x}=\mathrm{1}\:\vee\:{x}=\:\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{4}}}{\mathrm{2}}\:\vee\:{x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{4}}}{\mathrm{2}} \\ $$$${x}=−\mathrm{1}\vee\:{x}=\mathrm{1}\:\vee\:{x}=\:\frac{−\mathrm{1}\pm{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\vee\:{x}=\frac{\mathrm{1}\pm{i}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${x}=\mathrm{1},\omega,\omega^{\mathrm{2}} ,−\mathrm{1},−\omega,−\omega^{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *