Question Number 218820 by universe last updated on 16/Apr/25

Answered by mr W last updated on 17/Apr/25

$${a}_{{n}} ={a}+{b}−\frac{{ab}}{{a}_{{n}−\mathrm{1}} } \\ $$$${let}\:{a}_{{n}} =\frac{{t}_{{n}} }{{t}_{{n}−\mathrm{1}} } \\ $$$$\frac{{t}_{{n}} }{{t}_{{n}−\mathrm{1}} }={a}+{b}−\frac{{abt}_{{n}−\mathrm{2}} }{{t}_{{n}−\mathrm{1}} }=\frac{\left({a}+{b}\right){t}_{{n}−\mathrm{1}} −{abt}_{{n}−\mathrm{2}} }{{t}_{{n}−\mathrm{1}} } \\ $$$${t}_{{n}} =\left({a}+{b}\right){t}_{{n}−\mathrm{1}} −{abt}_{{n}−\mathrm{2}} \\ $$$${t}_{{n}} −\left({a}+{b}\right){t}_{{n}−\mathrm{1}} +{abt}_{{n}−\mathrm{2}} =\mathrm{0} \\ $$$${p}^{\mathrm{2}} −\left({a}+{b}\right){p}+{ab}=\mathrm{0} \\ $$$$\Rightarrow{p}_{\mathrm{1},\mathrm{2}} ={a},{b} \\ $$$$\Rightarrow{t}_{{n}} ={Aa}^{{n}} +{Bb}^{{n}} \\ $$$${a}_{{n}} =\frac{{Aa}^{{n}} +{Bb}^{{n}} }{{Aa}^{{n}−\mathrm{1}} +{Bb}^{{n}−\mathrm{1}} }=\frac{{Ca}^{{n}} +{b}^{{n}} }{{Ca}^{{n}−\mathrm{1}} +{b}^{{n}−\mathrm{1}} } \\ $$$${a}_{\mathrm{1}} =\frac{{Ca}+{b}}{{C}+\mathrm{1}}={a}+{b} \\ $$$$\Rightarrow{C}=−\frac{{a}}{{b}} \\ $$$$\Rightarrow{a}_{{n}} =\frac{{a}^{{n}+\mathrm{1}} −{b}^{{n}+\mathrm{1}} }{{a}^{{n}} −{b}^{{n}} }\:\checkmark \\ $$
Commented by mr W last updated on 17/Apr/25

$${is}\:{this}\:{what}\:{you}\:{have}\:{expected}?\:{do} \\ $$$${you}\:{have}\:{an}\:{other}\:{solution}? \\ $$
Commented by mr W last updated on 18/Apr/25

$${thanks}\:{for}\:{sharing}\:{your}\:{solution}! \\ $$
Commented by universe last updated on 19/Apr/25

$${thanks}\:{sir}\:{yes}\:{i}\:{have}\:{another}\:{solution}\: \\ $$$${but}\:{my}\:{solution}\:{is}\:{long} \\ $$
Commented by universe last updated on 18/Apr/25

Commented by universe last updated on 18/Apr/25
