Menu Close

Calculate-the-following-integral-0-0-0-J-ax-J-by-J-cz-x-2-y-2-z-2-e-p-x-2-y-2-z-2-dxdydz-where-J-u-is-the-Bassel-f




Question Number 218872 by Nicholas666 last updated on 16/Apr/25
   Calculate the following integral;     ∫_0 ^∞ ∫_0 ^∞ ∫_0 ^∞  ((J_𝛂 (ax)J_𝛃 (by)J_𝛄 (cz))/( (√(x^2 +y^2 +z^2 )))) e^(−p(x^2 +y^2 +z^2 ) dxdydz     )              where;      •  J_ν (u) is the Bassel function of the first kind of order 𝛎.           •  𝛂,𝛃 and 𝛄 are arbitrary real numbers parameters           (Not necessarily integers)      •   a,b,c and p are positive constants
$$ \\ $$$$\:\boldsymbol{{Calculate}}\:\boldsymbol{{the}}\:\boldsymbol{{following}}\:\boldsymbol{{integral}}; \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \:\frac{\boldsymbol{{J}}_{\boldsymbol{\alpha}} \left(\boldsymbol{{ax}}\right)\boldsymbol{{J}}_{\boldsymbol{\beta}} \left(\boldsymbol{{by}}\right)\boldsymbol{{J}}_{\boldsymbol{\gamma}} \left(\boldsymbol{{cz}}\right)}{\:\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} }}\:\boldsymbol{{e}}^{−\boldsymbol{{p}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} \right)\:\boldsymbol{{dxdydz}}\:\:\:\:\:} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{where}}; \\ $$$$\:\:\:\:\bullet\:\:\boldsymbol{{J}}_{\nu} \left(\boldsymbol{{u}}\right)\:\boldsymbol{{is}}\:\boldsymbol{{the}}\:\boldsymbol{{Bassel}}\:\boldsymbol{{function}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{first}}\:\boldsymbol{{kind}}\:\boldsymbol{{of}}\:\boldsymbol{{order}}\:\boldsymbol{\nu}.\:\:\:\:\: \\ $$$$\:\:\:\:\bullet\:\:\boldsymbol{\alpha},\boldsymbol{\beta}\:{and}\:\boldsymbol{\gamma}\:\boldsymbol{{are}}\:\boldsymbol{{arbitrary}}\:\boldsymbol{{real}}\:\boldsymbol{{numbers}}\:\boldsymbol{{parameters}}\: \\ $$$$\:\:\:\:\:\:\:\:\left(\boldsymbol{{Not}}\:\boldsymbol{{necessarily}}\:\boldsymbol{{integers}}\right) \\ $$$$\:\:\:\:\bullet\:\:\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}\:\boldsymbol{{and}}\:\boldsymbol{{p}}\:\boldsymbol{{are}}\:\boldsymbol{{positive}}\:\boldsymbol{{constants}}\:\:\:\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *