Menu Close

Calculate-the-following-integral-xJ-0-x-2-y-2-J-1-y-2-z-2-J-2-z-2-x-2-e-x-2-y-2-z-2-dxdydz-where-J-n-u-is-the-Bas




Question Number 218879 by Nicholas666 last updated on 16/Apr/25
     Calculate the following integral;          ∫_(−∞) ^∞ ∫_(−∞) ^∞ ∫_(−∞) ^∞ xJ_0 ((√(x^2 +y^2 )))J_1 ((√(y^2 +z^2 )))J_2 ((√(z^2 +x^2 )))e^(−(x^2 +y^2 +z^2 )) dxdydz            where J_n (u) is the Bassel function           of the first kind of order n
$$ \\ $$$$\:\:\:\boldsymbol{{Calculate}}\:\boldsymbol{{the}}\:\boldsymbol{{following}}\:\boldsymbol{{integral}};\:\:\:\:\:\: \\ $$$$\:\:\int_{−\infty} ^{\infty} \int_{−\infty} ^{\infty} \int_{−\infty} ^{\infty} \boldsymbol{{xJ}}_{\mathrm{0}} \left(\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} }\right)\boldsymbol{{J}}_{\mathrm{1}} \left(\sqrt{\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} }\right)\boldsymbol{{J}}_{\mathrm{2}} \left(\sqrt{\boldsymbol{{z}}^{\mathrm{2}} +\boldsymbol{{x}}^{\mathrm{2}} }\right)\boldsymbol{{e}}^{−\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} \right)} \boldsymbol{{dxdydz}}\:\:\:\:\:\:\: \\ $$$$\:\:\:\boldsymbol{{where}}\:\boldsymbol{{J}}_{\boldsymbol{{n}}} \left(\boldsymbol{{u}}\right)\:\boldsymbol{{is}}\:\boldsymbol{{the}}\:\boldsymbol{{Bassel}}\:\boldsymbol{{function}} \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{first}}\:\boldsymbol{{kind}}\:\boldsymbol{{of}}\:\boldsymbol{{order}}\:\boldsymbol{{n}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *