Question Number 218970 by Nicholas666 last updated on 17/Apr/25

$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2},\mathrm{12},\mathrm{18},\mathrm{48},\mathrm{50},….. \\ $$$$ \\ $$
Answered by Frix last updated on 17/Apr/25

$$\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{42}\:\mathrm{as}\:\mathrm{always}. \\ $$
Commented by Nicholas666 last updated on 17/Apr/25

$${how}\:{do}\:{you}\:{solve}? \\ $$
Commented by Rasheed.Sindhi last updated on 19/Apr/25

$$ \\ $$$${a}\left({n}\right)=\begin{cases}{\mathrm{2}{n}^{\mathrm{2}} \:{for}\:{an}\:{odd}\:{n}}\\{\frac{−\mathrm{21}{n}^{\mathrm{2}} +\mathrm{198}{n}−\mathrm{264}}{\mathrm{4}}\:{for}\:{an}\:{even}\:{n}}\end{cases} \\ $$$${Next}\:{term}\:{is} \\ $$$${a}\left(\mathrm{6}\right)=\frac{−\mathrm{21}\left(\mathrm{6}^{\mathrm{2}} \right)+\mathrm{198}\left(\mathrm{6}\right)−\mathrm{264}}{\mathrm{4}}=\mathrm{42} \\ $$
Commented by Frix last updated on 19/Apr/25
See? I told you so
Commented by Rasheed.Sindhi last updated on 19/Apr/25
100% true sir! ☺️
Answered by Rasheed.Sindhi last updated on 19/Apr/25

$$\:\:\:\:\:\:\:\:\mathrm{2},\mathrm{12},\mathrm{18},\mathrm{48},\mathrm{50},…..\begin{cases}{\mathrm{2}{n}^{\mathrm{2}} \:\:\:\:;{n}\in\left\{\mathrm{1},\mathrm{3},\mathrm{5},…\right\}}\\{\mathrm{3}{n}^{\mathrm{2}} \:\:\:\:;{n}\in\left\{\mathrm{2},\mathrm{4},\mathrm{6},…\right\}}\end{cases}\: \\ $$$$\mathrm{OR} \\ $$$$\:\:\:\:\:\:\mathrm{2},\mathrm{12},\mathrm{18},\mathrm{48},\mathrm{50},…..\:\mathrm{2}{n}^{\mathrm{2}} \left(\frac{\mathrm{1}+\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{2}}\right)+\mathrm{3}{n}^{\mathrm{2}} \left(\frac{\mathrm{1}+\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}}\right) \\ $$$$\mathrm{OR} \\ $$$$\mathrm{2},\mathrm{12},\mathrm{18},\mathrm{48},\mathrm{50},….\frac{{n}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{5}+\left(−\mathrm{1}\right)^{{n}} \right) \\ $$$${Next}\:{two}\:{terms}\:{are}:\:\mathrm{108}\:{and}\:\mathrm{98} \\ $$
Commented by Nicholas666 last updated on 19/Apr/25

$${thanks} \\ $$
Answered by Ghisom last updated on 19/Apr/25

$$\mathrm{zillions}\:\mathrm{of}\:\mathrm{possibilities}… \\ $$$$\mathrm{polynomial}\:\mathrm{solution}: \\ $$$${a}_{{n}} =−\frac{\mathrm{10}}{\mathrm{3}}{x}^{\mathrm{4}} +\mathrm{38}{x}^{\mathrm{3}} −\frac{\mathrm{440}}{\mathrm{3}}{x}^{\mathrm{2}} +\mathrm{254}{x}−\mathrm{120} \\ $$$$\mathrm{or}\:\mathrm{just}\:\mathrm{continue}: \\ $$$$\mathrm{2},\:\mathrm{12},\:\mathrm{18},\:\mathrm{48}, \\ $$$$\mathrm{48}+\mathrm{2}=\mathrm{50} \\ $$$$\mathrm{50}+\mathrm{12}=\mathrm{62} \\ $$$$\mathrm{62}+\mathrm{18}=\mathrm{80} \\ $$$$\mathrm{80}+\mathrm{48}=\mathrm{128} \\ $$$$\mathrm{128}+\mathrm{2}=\mathrm{130} \\ $$$$… \\ $$
Answered by Rasheed.Sindhi last updated on 19/Apr/25

$${a}\left({n}\right)=\begin{cases}{\mathrm{2}{n}^{\mathrm{2}} \:\:\:{for}\:{an}\:{odd}\:{n}}\\{\mathrm{2}\:\left(\frac{{n}}{\mathrm{2}}+\mathrm{2}\right)!\:{for}\:{an}\:{even}\:{n}}\end{cases} \\ $$$${Next}\:{two}\:{numbers}\:{are}:\:\mathrm{240}\:{and}\:\mathrm{98} \\ $$