Menu Close

In-physics-Flux-integral-S-F-dS-is-a-concept-that-widely-used-in-eletric-equation-or-Heat-Eqaution-for-example-A-D-dA-Q-0-Gauss-law-D-is-displayment-field-




Question Number 218975 by SdC355 last updated on 18/Apr/25
In physics , Flux integral ∮_( ∂S)  F^→ ∙ dS^→  is a   concept that widely used in eletric equation or  Heat Eqaution  for example.....   ∮_( A)  D^→ ∙dA^→ =Q_0  (Gauss law) D^→  is displayment field  ∮_( S)  B^→ ∙dA^→ =0 (Gauss law for magnetic) B^→  is Magnetic field  and in Heat Flux  (∂E_(in) /∂t)−(∂E_(out) /∂t)=∮_( S)  𝛗_q ^→ ∙dS^→     But in mathematic it seems that Surface integral  in the vector field is only extended version of the  integral,why mathematic don′t use surface integral  like physics...??? i really curious
$$\mathrm{In}\:\mathrm{physics}\:,\:\mathrm{Flux}\:\mathrm{integral}\:\oint_{\:\partial\boldsymbol{\mathcal{S}}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\centerdot\:\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathrm{S}}}\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\mathrm{concept}\:\mathrm{that}\:\mathrm{widely}\:\mathrm{used}\:\mathrm{in}\:\mathrm{eletric}\:\mathrm{equation}\:\mathrm{or} \\ $$$$\mathrm{Heat}\:\mathrm{Eqaution} \\ $$$$\mathrm{for}\:\mathrm{example}…..\: \\ $$$$\oint_{\:{A}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{D}}}\centerdot\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathrm{A}}}={Q}_{\mathrm{0}} \:\left(\mathrm{Gauss}\:\mathrm{law}\right)\:\overset{\rightarrow} {\boldsymbol{\mathrm{D}}}\:\mathrm{is}\:\mathrm{displayment}\:\mathrm{field} \\ $$$$\oint_{\:{S}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{B}}}\centerdot\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathrm{A}}}=\mathrm{0}\:\left(\mathrm{Gauss}\:\mathrm{law}\:\mathrm{for}\:\mathrm{magnetic}\right)\:\overset{\rightarrow} {\boldsymbol{\mathrm{B}}}\:\mathrm{is}\:\mathrm{Magnetic}\:\mathrm{field} \\ $$$$\mathrm{and}\:\mathrm{in}\:\mathrm{Heat}\:\mathrm{Flux} \\ $$$$\frac{\partial\mathrm{E}_{\mathrm{in}} }{\partial{t}}−\frac{\partial\mathrm{E}_{\mathrm{out}} }{\partial{t}}=\oint_{\:{S}} \:\overset{\rightarrow} {\boldsymbol{\phi}}_{\mathrm{q}} \centerdot\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathrm{S}}}\:\: \\ $$$$\mathrm{But}\:\mathrm{in}\:\mathrm{mathematic}\:\mathrm{it}\:\mathrm{seems}\:\mathrm{that}\:\mathrm{Surface}\:\mathrm{integral} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{vector}\:\mathrm{field}\:\mathrm{is}\:\mathrm{only}\:\mathrm{extended}\:\mathrm{version}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{integral},\mathrm{why}\:\mathrm{mathematic}\:\mathrm{don}'\mathrm{t}\:\mathrm{use}\:\mathrm{surface}\:\mathrm{integral} \\ $$$$\mathrm{like}\:\mathrm{physics}…???\:\mathrm{i}\:\mathrm{really}\:\mathrm{curious}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *