Question Number 219093 by hardmath last updated on 19/Apr/25

Commented by hardmath last updated on 19/Apr/25

$$\mathrm{ABC}\:=\:\bigtriangleup \\ $$$$\mathrm{B}\:-\:\mathrm{acute}\:\mathrm{angle} \\ $$$$\angle\mathrm{B}\:=\:\mathrm{2}\:\centerdot\:\angle\mathrm{C} \\ $$$$\mathrm{AB}\:=\:\mathrm{10} \\ $$$$\mathrm{BC}\:=\:\mathrm{22} \\ $$$$\mathrm{S}_{\bigtriangleup\boldsymbol{\mathrm{ABC}}} \:=\:? \\ $$
Answered by mr W last updated on 19/Apr/25

Commented by mr W last updated on 19/Apr/25

$$\frac{{y}}{\mathrm{10}}=\frac{{x}}{\mathrm{22}}={k}\:\Rightarrow{x}=\mathrm{22}{k},\:{y}=\mathrm{10}{k} \\ $$$${x}×\mathrm{10}^{\mathrm{2}} +{y}×\mathrm{22}^{\mathrm{2}} =\left({x}+{y}\right)\left({x}^{\mathrm{2}} +{xy}\right) \\ $$$$\mathrm{22}{k}×\mathrm{10}^{\mathrm{2}} +\mathrm{10}{k}×\mathrm{22}^{\mathrm{2}} =\mathrm{22}{k}\left(\mathrm{22}+\mathrm{10}\right)^{\mathrm{2}} {k}^{\mathrm{2}} \\ $$$$\mathrm{10}=\left(\mathrm{22}+\mathrm{10}\right){k}^{\mathrm{2}} \\ $$$$\Rightarrow{k}^{\mathrm{2}} =\frac{\mathrm{10}}{\mathrm{22}+\mathrm{10}}\:\Rightarrow{k}=\frac{\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\Rightarrow{x}=\mathrm{22}×\frac{\sqrt{\mathrm{5}}}{\mathrm{4}}=\frac{\mathrm{11}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{11}×\mathrm{2}}{\mathrm{11}\sqrt{\mathrm{5}}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\Rightarrow\mathrm{sin}\:\alpha=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$${S}_{{ABC}} =\frac{\mathrm{10}×\mathrm{22}\:\mathrm{sin}\:\mathrm{2}\alpha}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{10}×\mathrm{22}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}=\mathrm{88} \\ $$
Commented by hardmath last updated on 19/Apr/25

$$\mathrm{dear}\:\mathrm{professor},\:\mathrm{answer}:\:\:\mathrm{60},\:\mathrm{66},\:\mathrm{72},\:\mathrm{80},\:\mathrm{88} \\ $$
Answered by mr W last updated on 19/Apr/25

Commented by mr W last updated on 19/Apr/25

$$\mathrm{10}{b}^{\mathrm{2}} +\mathrm{22}{b}^{\mathrm{2}} =\mathrm{32}\left(\mathrm{10}^{\mathrm{2}} +\mathrm{10}×\mathrm{22}\right) \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\mathrm{320}\:\Rightarrow{b}=\mathrm{8}\sqrt{\mathrm{5}} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{16}}{\:\mathrm{8}\sqrt{\mathrm{5}}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\: \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\:\Rightarrow\mathrm{sin}\:\mathrm{2}\alpha=\frac{\mathrm{4}}{\mathrm{5}} \\ $$$${S}_{{ABC}} =\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{10}×\mathrm{22}×\frac{\mathrm{4}}{\mathrm{5}}=\mathrm{88} \\ $$
Commented by hardmath last updated on 19/Apr/25

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$
Answered by Nicholas666 last updated on 20/Apr/25

$${applying}\:{the}\:{law}\:{of}\:{sinus}; \\ $$$$\:\:\frac{\mathrm{22}}{{sin}\:\left(\mathrm{180}°−\mathrm{3}\alpha\right)}\:=\:\frac{\mathrm{10}}{{sin}\:\alpha}\:\Rightarrow\:\frac{\mathrm{22}}{{sin}\:\mathrm{3}\alpha}\:=\:\frac{\mathrm{10}}{{sin}\:\alpha}\:\: \\ $$$$\:\rightarrow\:\mathrm{22}\:{sin}\:\alpha\:=\:\mathrm{10}\left({sin}\:\mathrm{3}\alpha\:−\mathrm{4}\:{sin}^{\mathrm{3}} \:\alpha\right) \\ $$$$\:\rightarrow\mathrm{22}\:=\:\mathrm{10}\left(\mathrm{3}\:−\:\mathrm{4}\:{sin}^{\mathrm{2}} \:\alpha\right)\:\Rightarrow\:{sin}^{\mathrm{2}} \:\alpha\:=\:\frac{\mathrm{1}}{\mathrm{5}}\:\:\: \\ $$$$\rightarrow{sin}\:\alpha\:=\:\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\:\:=\:\alpha\:=\:{arcsin}\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\right)\:=\:\mathrm{26}.\mathrm{57}° \\ $$$$\rightarrow{AC}\:=\:\mathrm{10}\:\:\frac{{sin}\:\mathrm{2}\:\alpha}{{sin}\:\alpha}\:=\:\mathrm{20}\:{cos}\:\alpha\:=\:\mathrm{20}\:\left(\frac{\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{5}}\right)\:=\:\:\mathrm{8}\sqrt{\mathrm{5}}\:=\:\mathrm{17}.\mathrm{89} \\ $$$$\rightarrow\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{10}\right)\left(\mathrm{22}\right)\:{sin}\:\mathrm{2}\alpha\:=\mathrm{110}\:\left(\frac{\mathrm{4}}{\mathrm{5}}\right)\:=\:\mathrm{88}\:\: \\ $$$$ \\ $$$$\alpha\:=\:\mathrm{26}.\mathrm{57}° \\ $$$${AC}\:=\:\mathrm{17}.\mathrm{89} \\ $$$${S}_{{ABC}} \:=\:\mathrm{88}\:{sequare}\:{units} \\ $$$$ \\ $$