Menu Close

n-1-1-n-




Question Number 219098 by zetamaths last updated on 20/Apr/25
ζ(α)=Σ_(n=1) ^(+∞) (1/n^α )
$$\zeta\left(\alpha\right)=\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\alpha} }\:\: \\ $$
Answered by Frix last updated on 20/Apr/25
This is just the definition of the ζ−Function,  there′s nothing to solve.  ∀s∈C∧Re(s)>1: ζ(s)=Σ_(n=1) ^∞  (1/n^s )
$$\mathrm{This}\:\mathrm{is}\:\mathrm{just}\:\mathrm{the}\:\mathrm{definition}\:\mathrm{of}\:\mathrm{the}\:\zeta−\mathrm{Function}, \\ $$$$\mathrm{there}'\mathrm{s}\:\mathrm{nothing}\:\mathrm{to}\:\mathrm{solve}. \\ $$$$\forall{s}\in\mathbb{C}\wedge\mathrm{Re}\left({s}\right)>\mathrm{1}:\:\zeta\left({s}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}^{{s}} } \\ $$
Answered by MrGaster last updated on 20/Apr/25
∫_1 ^∞ (1/x^α )dx=lim_(t→∞) [(x^(−α+1) /(−α+1))]_1 ^t   =lim_(t→∞) ((t^(−α+1) /(−α+1))−(1/(−α+1)))  ⇒(α>1)⇒(−α+1≤0)lim_(t→∞)  t^(−α+1) =0  ⇒∫_1 ^∞ (1/x^α )dx=(1/(α−1))<∞  ⇒Σ_(n=1) ^∞ (1/n^α )_(converges)   (α≤1)⇒∫_1 ^∞ (1/x^α )dx_(diverges)  ⇒Σ_(n=1) ^∞ (1/n^α )diverges  ∴α>1
$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{x}^{\alpha} }{dx}=\underset{{t}\rightarrow\infty} {\mathrm{lim}}\left[\frac{{x}^{−\alpha+\mathrm{1}} }{−\alpha+\mathrm{1}}\right]_{\mathrm{1}} ^{{t}} \\ $$$$=\underset{{t}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{t}^{−\alpha+\mathrm{1}} }{−\alpha+\mathrm{1}}−\frac{\mathrm{1}}{−\alpha+\mathrm{1}}\right) \\ $$$$\Rightarrow\left(\alpha>\mathrm{1}\right)\Rightarrow\left(−\alpha+\mathrm{1}\leqslant\mathrm{0}\right)\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:{t}^{−\alpha+\mathrm{1}} =\mathrm{0} \\ $$$$\Rightarrow\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{x}^{\alpha} }{dx}=\frac{\mathrm{1}}{\alpha−\mathrm{1}}<\infty \\ $$$$\Rightarrow\underset{\mathrm{converges}} {\underbrace{\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\alpha} }}} \\ $$$$\left(\alpha\leq\mathrm{1}\right)\Rightarrow\underset{\mathrm{diverges}} {\underbrace{\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{x}^{\alpha} }{dx}}}\:\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\alpha} }\mathrm{diverges} \\ $$$$\therefore\alpha>\mathrm{1} \\ $$
Commented by zetamaths last updated on 20/Apr/25
is false use gamma function
$${is}\:{false}\:{use}\:{gamma}\:{function} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *