Question Number 219236 by Nicholas666 last updated on 20/Apr/25

$$ \\ $$$$\:\:\:\:{f}\left({t}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\pi{i}}\:\int_{\:{c}−{i}\infty} ^{\:{c}+{i}\infty} \:\frac{{e}^{{st}} }{{s}^{{k}} \:}\:\:{ds}\:\:\:,\:\:{k}\:\in\mathbb{C} \\ $$$$\: \\ $$
Commented by Nicholas666 last updated on 22/Apr/25
https://www.quora.com/How-dow-Yo-solve-%25F0%259D%2591%2593-%25F0%259D%2591%25A1-1-2%CF%80%25F0%259D%2591%2596-%25F0%259D%2591%2592-%25F0%259D%2591%25A0%25F0%259D%2591%25A1-%25F0%259D%2591%25A0-%25F0%259D%2591%2598-%25F0%259D%2591%2590-%25F0%259D%2591%2596-%25F0%259D%2591%2590-%25F0%259D%2591%2596-%25F0%259D%2591%2591%25F0%259D%2591%25A0/answer/Bekicot-5?ch=10&oid=1477743856307378&share=b37e94e3&srid=5Xg5SU&target_type=answer
Answered by SdC355 last updated on 21/Apr/25

$$\mathcal{L}^{−\mathrm{1}} =\int_{−\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} ^{+\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} \:\:\frac{\mathrm{1}}{\mathrm{2}\pi\boldsymbol{{i}}}{e}^{{st}} \:,\:{t}\in\mathbb{R} \\ $$$$\mathcal{L}_{{t}} ^{−\mathrm{1}} \left\{\frac{{n}!}{{s}^{{n}+\mathrm{1}} }\right\}={t}^{{n}} \:\:\therefore\:\:\:\mathcal{L}_{{t}} ^{−\mathrm{1}} \left\{\frac{\mathrm{1}}{{s}^{{k}} }\right\}=\frac{{t}^{{k}} }{\boldsymbol{\Gamma}\left({k}\right)} \\ $$
Commented by Nicholas666 last updated on 22/Apr/25

$${thanks} \\ $$