Menu Close

x-1-x-2-1-x-3-dx-




Question Number 219193 by fantastic last updated on 20/Apr/25
∫(√((x+1)/(x+2))) .(1/(x+3)) dx=?
$$\int\sqrt{\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}}\:.\frac{\mathrm{1}}{{x}+\mathrm{3}}\:{dx}=? \\ $$
Answered by aleks041103 last updated on 20/Apr/25
((x+1)/(x+2))=u=1−(1/(x+2))  ⇒x=(1/(1−u))−2=((2u−1)/(1−u))  ⇒dx=((2(1−u)−(−1)(2u−1))/((1−u)^2 ))du=  =((2−2u+2u−1)/((1−u)^2 ))du=(du/((1−u)^2 ))  (1/(x+3))=(1/(1+(1/(1−u))))=((1−u)/(2−u))=((u−1)/(u−2))  ⇒I=∫(√(((x+1)/(x+2)) ))(dx/(x+3)) = ∫(√u) ((u−1)/(u−2)) (du/((u−1)^2 ))=  =∫ (((√u)du)/((u−1)(u−2)))  (1/((u−1)(u−2))) = (1/(u−2))−(1/(u−1))  ⇒ I=∫ (((√u)du)/(u−2)) − ∫ (((√u)du)/(u−1))  ∫ (((√u)du)/(u−a)) = ∫((2u)/(u−a)) (du/(2(√u))) = 2J_a   z=(√u)=(√((x+1)/(x+2)))  ⇒J_a = ∫(z^2 /(z^2 −a))dz=∫1+(a/(z^2 −a))dz=  =z+(√a)∫((d(z/(√a)))/((z/(√a))^2 −1))=  =z+((√a)/2) ln∣((z−(√a))/(z+(√a)))∣  ⇒I=2(J_2 −J_1 )=  =(√2)ln∣((z−(√2))/(z+(√2)))∣−ln∣((z−1)/(z+1))∣  ⇒∫(√((x+1)/(x+2))) (dx/(x+3)) = (√2) ln∣(((√((x+1)/(x+2)))−(√2))/( (√((x+1)/(x+2)))+(√2)))∣−ln∣(((√((x+1)/(x+2)))−1)/( (√((x+1)/(x+2)))+1))∣+C
$$\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}={u}=\mathrm{1}−\frac{\mathrm{1}}{{x}+\mathrm{2}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{1}−{u}}−\mathrm{2}=\frac{\mathrm{2}{u}−\mathrm{1}}{\mathrm{1}−{u}} \\ $$$$\Rightarrow{dx}=\frac{\mathrm{2}\left(\mathrm{1}−{u}\right)−\left(−\mathrm{1}\right)\left(\mathrm{2}{u}−\mathrm{1}\right)}{\left(\mathrm{1}−{u}\right)^{\mathrm{2}} }{du}= \\ $$$$=\frac{\mathrm{2}−\mathrm{2}{u}+\mathrm{2}{u}−\mathrm{1}}{\left(\mathrm{1}−{u}\right)^{\mathrm{2}} }{du}=\frac{{du}}{\left(\mathrm{1}−{u}\right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{{x}+\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}−{u}}}=\frac{\mathrm{1}−{u}}{\mathrm{2}−{u}}=\frac{{u}−\mathrm{1}}{{u}−\mathrm{2}} \\ $$$$\Rightarrow{I}=\int\sqrt{\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\:}\frac{{dx}}{{x}+\mathrm{3}}\:=\:\int\sqrt{{u}}\:\frac{{u}−\mathrm{1}}{{u}−\mathrm{2}}\:\frac{{du}}{\left({u}−\mathrm{1}\right)^{\mathrm{2}} }= \\ $$$$=\int\:\frac{\sqrt{{u}}{du}}{\left({u}−\mathrm{1}\right)\left({u}−\mathrm{2}\right)} \\ $$$$\frac{\mathrm{1}}{\left({u}−\mathrm{1}\right)\left({u}−\mathrm{2}\right)}\:=\:\frac{\mathrm{1}}{{u}−\mathrm{2}}−\frac{\mathrm{1}}{{u}−\mathrm{1}} \\ $$$$\Rightarrow\:{I}=\int\:\frac{\sqrt{{u}}{du}}{{u}−\mathrm{2}}\:−\:\int\:\frac{\sqrt{{u}}{du}}{{u}−\mathrm{1}} \\ $$$$\int\:\frac{\sqrt{{u}}{du}}{{u}−{a}}\:=\:\int\frac{\mathrm{2}{u}}{{u}−{a}}\:\frac{{du}}{\mathrm{2}\sqrt{{u}}}\:=\:\mathrm{2}{J}_{{a}} \\ $$$${z}=\sqrt{{u}}=\sqrt{\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}} \\ $$$$\Rightarrow{J}_{{a}} =\:\int\frac{{z}^{\mathrm{2}} }{{z}^{\mathrm{2}} −{a}}{dz}=\int\mathrm{1}+\frac{{a}}{{z}^{\mathrm{2}} −{a}}{dz}= \\ $$$$={z}+\sqrt{{a}}\int\frac{{d}\left({z}/\sqrt{{a}}\right)}{\left({z}/\sqrt{{a}}\right)^{\mathrm{2}} −\mathrm{1}}= \\ $$$$={z}+\frac{\sqrt{{a}}}{\mathrm{2}}\:{ln}\mid\frac{{z}−\sqrt{{a}}}{{z}+\sqrt{{a}}}\mid \\ $$$$\Rightarrow{I}=\mathrm{2}\left({J}_{\mathrm{2}} −{J}_{\mathrm{1}} \right)= \\ $$$$=\sqrt{\mathrm{2}}{ln}\mid\frac{{z}−\sqrt{\mathrm{2}}}{{z}+\sqrt{\mathrm{2}}}\mid−{ln}\mid\frac{{z}−\mathrm{1}}{{z}+\mathrm{1}}\mid \\ $$$$\Rightarrow\int\sqrt{\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}}\:\frac{{dx}}{{x}+\mathrm{3}}\:=\:\sqrt{\mathrm{2}}\:{ln}\mid\frac{\sqrt{\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}}−\sqrt{\mathrm{2}}}{\:\sqrt{\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}}+\sqrt{\mathrm{2}}}\mid−{ln}\mid\frac{\sqrt{\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}}−\mathrm{1}}{\:\sqrt{\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}}+\mathrm{1}}\mid+{C} \\ $$
Answered by Frix last updated on 20/May/25
∫((√(x+1))/((x+3)(√(x+2))))dx=  =∫(dx/( (√(x+1))(√(x+2))))−2∫(dx/( (√(x+1))(√(x+2))(x+3)))  (1)  ∫(dx/( (√(x+1))(√(x+2))))=            _(dx=2(√(x+1))(√(x+2))(dt/t))^(t=(√(x+1))+(√(x+2)))   =2∫(dt/t)=2ln t =2ln ((√(x+1))+(√(x+2)))  (2)  −2∫(dx/( (√(x+1))(√(x+2))(x+3)))=            _(dx=(√(x+1))(√(x+2))(dt/(t−3)))^(t=2(x+3+(√(x+1))(√(x+2))) ⇔ x=((t^2 −12t+20)/(4(t−3))))   =−8∫(dt/(t^2 −8))=(√2)ln ((t+2(√2))/(t−2(√2))) =  =(√2)ln ∣((x+3+(√2)+(√(x+1))(√(x+2)))/(x+3−(√2)+(√(x+1))(√(x+2))))∣  ⇒  ∫((√(x+1))/((x+3)(√(x+2))))dx=  =2ln ∣(√(x+1))+(√(x+2))∣ +(√2)ln ∣((x+3+(√2)+(√(x+1))(√(x+2)))/(x+3−(√2)+(√(x+1))(√(x+2))))∣ +C
$$\int\frac{\sqrt{{x}+\mathrm{1}}}{\left({x}+\mathrm{3}\right)\sqrt{{x}+\mathrm{2}}}{dx}= \\ $$$$=\int\frac{{dx}}{\:\sqrt{{x}+\mathrm{1}}\sqrt{{x}+\mathrm{2}}}−\mathrm{2}\int\frac{{dx}}{\:\sqrt{{x}+\mathrm{1}}\sqrt{{x}+\mathrm{2}}\left({x}+\mathrm{3}\right)} \\ $$$$\left(\mathrm{1}\right) \\ $$$$\int\frac{{dx}}{\:\sqrt{{x}+\mathrm{1}}\sqrt{{x}+\mathrm{2}}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:_{{dx}=\mathrm{2}\sqrt{{x}+\mathrm{1}}\sqrt{{x}+\mathrm{2}}\frac{{dt}}{{t}}} ^{{t}=\sqrt{{x}+\mathrm{1}}+\sqrt{{x}+\mathrm{2}}} \\ $$$$=\mathrm{2}\int\frac{{dt}}{{t}}=\mathrm{2ln}\:{t}\:=\mathrm{2ln}\:\left(\sqrt{{x}+\mathrm{1}}+\sqrt{{x}+\mathrm{2}}\right) \\ $$$$\left(\mathrm{2}\right) \\ $$$$−\mathrm{2}\int\frac{{dx}}{\:\sqrt{{x}+\mathrm{1}}\sqrt{{x}+\mathrm{2}}\left({x}+\mathrm{3}\right)}= \\ $$$$\:\:\:\:\:\:\:\:\:\:_{{dx}=\sqrt{{x}+\mathrm{1}}\sqrt{{x}+\mathrm{2}}\frac{{dt}}{{t}−\mathrm{3}}} ^{{t}=\mathrm{2}\left({x}+\mathrm{3}+\sqrt{{x}+\mathrm{1}}\sqrt{{x}+\mathrm{2}}\right)\:\Leftrightarrow\:{x}=\frac{{t}^{\mathrm{2}} −\mathrm{12}{t}+\mathrm{20}}{\mathrm{4}\left({t}−\mathrm{3}\right)}} \\ $$$$=−\mathrm{8}\int\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{8}}=\sqrt{\mathrm{2}}\mathrm{ln}\:\frac{{t}+\mathrm{2}\sqrt{\mathrm{2}}}{{t}−\mathrm{2}\sqrt{\mathrm{2}}}\:= \\ $$$$=\sqrt{\mathrm{2}}\mathrm{ln}\:\mid\frac{{x}+\mathrm{3}+\sqrt{\mathrm{2}}+\sqrt{{x}+\mathrm{1}}\sqrt{{x}+\mathrm{2}}}{{x}+\mathrm{3}−\sqrt{\mathrm{2}}+\sqrt{{x}+\mathrm{1}}\sqrt{{x}+\mathrm{2}}}\mid \\ $$$$\Rightarrow \\ $$$$\int\frac{\sqrt{{x}+\mathrm{1}}}{\left({x}+\mathrm{3}\right)\sqrt{{x}+\mathrm{2}}}{dx}= \\ $$$$=\mathrm{2ln}\:\mid\sqrt{{x}+\mathrm{1}}+\sqrt{{x}+\mathrm{2}}\mid\:+\sqrt{\mathrm{2}}\mathrm{ln}\:\mid\frac{{x}+\mathrm{3}+\sqrt{\mathrm{2}}+\sqrt{{x}+\mathrm{1}}\sqrt{{x}+\mathrm{2}}}{{x}+\mathrm{3}−\sqrt{\mathrm{2}}+\sqrt{{x}+\mathrm{1}}\sqrt{{x}+\mathrm{2}}}\mid\:+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *