Menu Close

Prove-I-0-x-1-pi-0-pi-e-x-cox-d-x-2-I-0-x-xI-0-x-x-2-I-0-x-0-




Question Number 219305 by Nicholas666 last updated on 22/Apr/25
        Prove;     I_0 (x) =(1/π)∫_0 ^( π)  e^( x cox(θ))  dθ ;     x^2 I_0 ^(′′) (x) + xI′_0 (x) − x^2 I_0 (x) = 0;
$$ \\ $$$$\:\:\:\:\:\:{Prove}; \\ $$$$\:\:\:{I}_{\mathrm{0}} \left({x}\right)\:=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\:\pi} \:{e}^{\:{x}\:{cox}\left(\theta\right)} \:{d}\theta\:; \\ $$$$\:\:\:{x}^{\mathrm{2}} {I}_{\mathrm{0}} ^{''} \left({x}\right)\:+\:{xI}'_{\mathrm{0}} \left({x}\right)\:−\:{x}^{\mathrm{2}} {I}_{\mathrm{0}} \left({x}\right)\:=\:\mathrm{0}; \\ $$$$\: \\ $$
Answered by MrGaster last updated on 30/Jun/25

Leave a Reply

Your email address will not be published. Required fields are marked *