Menu Close

1-cos-u-sin-u-1-du-




Question Number 219350 by SdC355 last updated on 23/Apr/25
∫  (1/(cos(u)+sin(u)+1)) du=??
$$\int\:\:\frac{\mathrm{1}}{\mathrm{cos}\left({u}\right)+\mathrm{sin}\left({u}\right)+\mathrm{1}}\:\mathrm{d}{u}=?? \\ $$
Answered by vnm last updated on 23/Apr/25
∫(1/(2cos^2 (u/2)+2sin(u/2)cos(u/2)))du=  ∫(1/((1+tan(u/2))∙2cos^2 (u/2)))du=  ∫(1/(1+tan(u/2)))d(1+tan(u/2))=  ln∣1+tan(u/2)∣+C
$$\int\frac{\mathrm{1}}{\mathrm{2cos}^{\mathrm{2}} \frac{{u}}{\mathrm{2}}+\mathrm{2sin}\frac{{u}}{\mathrm{2}}\mathrm{cos}\frac{{u}}{\mathrm{2}}}\mathrm{d}{u}= \\ $$$$\int\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{tan}\frac{{u}}{\mathrm{2}}\right)\centerdot\mathrm{2cos}^{\mathrm{2}} \frac{{u}}{\mathrm{2}}}\mathrm{d}{u}= \\ $$$$\int\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}\frac{{u}}{\mathrm{2}}}\mathrm{d}\left(\mathrm{1}+\mathrm{tan}\frac{{u}}{\mathrm{2}}\right)= \\ $$$$\mathrm{ln}\mid\mathrm{1}+\mathrm{tan}\frac{{u}}{\mathrm{2}}\mid+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *