Menu Close

Question-219425




Question Number 219425 by Nicholas666 last updated on 24/Apr/25
Commented by Nicholas666 last updated on 24/Apr/25
    ABC reguler pentagon      P, Q, T     toricelli′s point of AED,BCD,ADE          find angle PTQ?
$$\:\:\:\:{ABC}\:{reguler}\:{pentagon}\: \\ $$$$\:\:\:{P},\:{Q},\:{T}\:\:\:\:\:{toricelli}'{s}\:{point}\:{of}\:{AED},{BCD},{ADE}\:\:\:\:\: \\ $$$$\:\:\:{find}\:{angle}\:{PTQ}? \\ $$
Answered by mr W last updated on 24/Apr/25
Commented by mr W last updated on 24/Apr/25
TB=(2/( (√3)))  BQ=((2 cos 36°)/(cos 30°))=((2×2)/( (√3)))×(((√5)+1)/4)=(((√5)+1)/( (√3)))  TQ=(√(((2/( (√3))))^2 +((((√5)+1)/( (√3))))^2 −2×(2/( (√3)))×(((√5)+1)/( (√3)))×(((√5)−1)/4)))       =(√(((((√5)+1)/( (√3))))^2 ))=(((√5)+1)/( (√3)))=BQ  ⇒α=72°  x=360°−2×72°−120°=96°
$${TB}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}} \\ $$$${BQ}=\frac{\mathrm{2}\:\mathrm{cos}\:\mathrm{36}°}{\mathrm{cos}\:\mathrm{30}°}=\frac{\mathrm{2}×\mathrm{2}}{\:\sqrt{\mathrm{3}}}×\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${TQ}=\sqrt{\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} −\mathrm{2}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}×\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}×\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}} \\ $$$$\:\:\:\:\:=\sqrt{\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} }=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\:\sqrt{\mathrm{3}}}={BQ} \\ $$$$\Rightarrow\alpha=\mathrm{72}° \\ $$$${x}=\mathrm{360}°−\mathrm{2}×\mathrm{72}°−\mathrm{120}°=\mathrm{96}° \\ $$
Commented by Nicholas666 last updated on 25/Apr/25
thanks
$${thanks} \\ $$
Answered by Nicholas666 last updated on 29/Apr/25

Leave a Reply

Your email address will not be published. Required fields are marked *