Menu Close

I-n-0-1-0-1-0-1-x-1-x-2-x-n-a-1-x-1-x-2-x-n-ln-x-1-ln-x-2-ln-x-n-dx-1-dx-2-dx-n-




Question Number 219554 by Nicholas666 last updated on 28/Apr/25
   I_n =∫_0 ^( 1) ∫_0 ^1 ...∫_0 ^( 1) (((x_1 x_2 ...x_n )^a )/((1−x_1 x_2 ...x_n )))ln(x_(1 ) )ln(x_2 )...ln(x_(n ) )dx_1 dx_2 ...dx_(n )
$$ \\ $$$$\:{I}_{{n}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} …\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left({x}_{\mathrm{1}} {x}_{\mathrm{2}} …{x}_{{n}} \right)^{{a}} }{\left(\mathrm{1}−{x}_{\mathrm{1}} {x}_{\mathrm{2}} …{x}_{{n}} \right)}{ln}\left({x}_{\mathrm{1}\:} \right){ln}\left({x}_{\mathrm{2}} \right)…{ln}\left({x}_{{n}\:} \right){dx}_{\mathrm{1}} {dx}_{\mathrm{2}} …{dx}_{{n}\:} \:\:\:\:\: \\ $$$$ \\ $$
Answered by maths2 last updated on 29/Apr/25
=Σ_(k≥0) ∫_0 ^1 ...∫_0 ^1 (x_1 ....x_n )^(a+k) ln(x_1 )....ln(x_n )dx  =Σ_(k≥0) (((−1)^n )/((a+k+1)^(2n) ))=(−1)^n Σ_(k≥0) (1/((1+a+k)^(2n) ))=(−1)^n ζ(a+1,2n)  ζ(x,n)=Σ_(m≥0) (1/((x+m)^n ))  zeta Hurwitz function
$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} …\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}_{\mathrm{1}} ….{x}_{{n}} \right)^{{a}+{k}} {ln}\left({x}_{\mathrm{1}} \right)….{ln}\left({x}_{{n}} \right){dx} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({a}+{k}+\mathrm{1}\right)^{\mathrm{2}{n}} }=\left(−\mathrm{1}\right)^{{n}} \underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{1}+{a}+{k}\right)^{\mathrm{2}{n}} }=\left(−\mathrm{1}\right)^{{n}} \zeta\left({a}+\mathrm{1},\mathrm{2}{n}\right) \\ $$$$\zeta\left({x},{n}\right)=\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left({x}+{m}\right)^{{n}} }\:\:{zeta}\:{Hurwitz}\:{function} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *