Menu Close

let-be-the-sequence-x-n-n-1-defined-by-x-1-1-x-n-2-3x-n-1-x-n-n-N-find-L-lim-n-k-0-0-x-2k-1-x-k-x-k-1-1-n-




Question Number 219561 by hardmath last updated on 28/Apr/25
let be the sequence   (x_n )n ≥ 1  defined by   x_1 = 1                            x_(n+2)  = 3x_(n+1) − x_n   ∀n ∈ N  find   L =lim_(n→∞)  ((Σ_(k=0) ^0   (x_(2k+1) /(x_k  + x_(k+1) ))))^(1/n)  = ?
$$\mathrm{let}\:\mathrm{be}\:\mathrm{the}\:\mathrm{sequence}\:\:\:\left(\mathrm{x}_{\boldsymbol{\mathrm{n}}} \right)\mathrm{n}\:\geqslant\:\mathrm{1} \\ $$$$\mathrm{defined}\:\mathrm{by}\:\:\:\mathrm{x}_{\mathrm{1}} =\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}_{\boldsymbol{\mathrm{n}}+\mathrm{2}} \:=\:\mathrm{3x}_{\boldsymbol{\mathrm{n}}+\mathrm{1}} −\:\mathrm{x}_{\boldsymbol{\mathrm{n}}} \\ $$$$\forall\mathrm{n}\:\in\:\mathbb{N} \\ $$$$\mathrm{find}\:\:\:\boldsymbol{\mathrm{L}}\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\boldsymbol{\mathrm{n}}}]{\underset{\boldsymbol{\mathrm{k}}=\mathrm{0}} {\overset{\mathrm{0}} {\sum}}\:\:\frac{\mathrm{x}_{\mathrm{2}\boldsymbol{\mathrm{k}}+\mathrm{1}} }{\mathrm{x}_{\boldsymbol{\mathrm{k}}} \:+\:\mathrm{x}_{\boldsymbol{\mathrm{k}}+\mathrm{1}} }}\:=\:? \\ $$
Commented by Nicholas666 last updated on 28/Apr/25
((7+3(√5))/2)
$$\frac{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Commented by mr W last updated on 30/Apr/25
the sequence is not sufficiently  defined with x_1 =1 alone.   for example you can not determine   x_2 =?.  please recheck the question!
$${the}\:{sequence}\:{is}\:{not}\:{sufficiently} \\ $$$${defined}\:{with}\:{x}_{\mathrm{1}} =\mathrm{1}\:{alone}.\: \\ $$$${for}\:{example}\:{you}\:{can}\:{not}\:{determine}\: \\ $$$${x}_{\mathrm{2}} =?. \\ $$$${please}\:{recheck}\:{the}\:{question}! \\ $$
Commented by hardmath last updated on 02/May/25
thankyou my dear prifessor
$$\mathrm{thankyou}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{prifessor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *