Question Number 219606 by Nicholas666 last updated on 29/Apr/25

$$ \\ $$$$\:\mathrm{prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers}\:{a},{b},{c},\:\:\: \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{inequality}\:\mathrm{holds}; \\ $$$$\:\:\frac{{a}^{\mathrm{2}} }{{b}\:+\:{c}}\:+\:\frac{{b}^{\mathrm{2}} }{{c}\:+\:{a}}\:+\:\frac{{c}^{\mathrm{2}} }{{a}\:+\:{b}}\:\:\geqslant\:\frac{{a}\:+\:{b}\:+\:{c}}{\mathrm{2}} \\ $$$$ \\ $$
Answered by Nicholas666 last updated on 29/Apr/25

$${a},{b},{c}\:>\mathrm{0} \\ $$$$\frac{{a}^{\mathrm{2}} }{{b}+{c}}+{a}\:=\:\frac{{a}\left({a}+{b}+{c}\right)}{{b}+{c}} \\ $$$$\frac{{b}^{\mathrm{2}} }{{c}+{a}}+{b}\:=\:\frac{{b}\left({a}+{b}+{c}\right)}{{c}+{a}} \\ $$$$\frac{{c}^{\mathrm{2}} }{{a}+{b}}+{c}\:=\:\frac{{c}\left({a}+{b}+{c}\right)}{{a}+{b}} \\ $$$$\left(\frac{{a}^{\mathrm{2}} }{{b}+{c}}\:+\:\frac{{b}^{\mathrm{2}} }{{c}+{a}}\:+\:\frac{{c}^{\mathrm{2}} }{{a}+{b}}\right)+\left({a}+{b}+{c}\right)=\left({a}+{b}+{c}\right)\left(\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}\right) \\ $$$$\frac{{a}}{{b}+{c}}+\mathrm{1}=\frac{{a}+{b}+{c}}{{b}+{c}} \\ $$$$\frac{{b}}{{c}+{a}}+\mathrm{1}=\frac{{a}+{b}+{c}}{{c}+{a}} \\ $$$$\frac{{c}}{{a}+{b}}+\mathrm{1}=\frac{{a}+{b}+{c}}{{a}+{b}} \\ $$$$\left(\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}\right)+\mathrm{3}=\left({a}+{b}+{c}\right)\left(\frac{\mathrm{1}}{{b}+{c}}+\frac{\mathrm{1}}{{c}+{a}}+\frac{\mathrm{1}}{{a}+{b}}\right) \\ $$$$\frac{\mathrm{1}}{{b}+{c}}+\frac{\mathrm{1}}{{c}+{a}}+\frac{\mathrm{1}}{{a}+{b}}\:\geqslant\:\frac{\mathrm{9}}{\mathrm{2}\left({a}+{b}+{c}\right)}\:\:\:\:\:\:\:\left({from}\:\:{AM}−{HM}\right) \\ $$$$\left(\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}\:\geqslant\frac{\mathrm{3}}{\mathrm{2}}\right. \\ $$$$\left(\:\frac{{a}^{\mathrm{2}} }{{b}+{c}}+\frac{{b}^{\mathrm{2}} }{{c}+{a}}+\frac{{c}^{\mathrm{2}} }{{a}+{b}}\right)+\left({a}+{b}+{c}\right)\geqslant\left({a}+{b}+{c}\right).\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\frac{{a}^{\mathrm{2}} }{{b}+{c}}+\frac{{b}^{\mathrm{2}} }{{c}+{a}}+\frac{{c}^{\mathrm{2}} }{{a}+{b}}\:\geqslant\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{b}+{c}\right) \\ $$$$\begin{array}{|c|c|}{\frac{{a}^{\mathrm{2}} }{{b}+{c}}\:+\:\frac{{b}^{\mathrm{2}} }{{c}+{a}}\:+\:\frac{{c}^{\mathrm{2}} }{{a}+{b}}\:\geqslant\:\frac{{a}+{b}+{c}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\checkmark}\\{\:\mathrm{the}\:\mathrm{inequality}\:\mathrm{is}\:\mathrm{proven}\:\:\mathrm{True}}\\\hline\end{array} \\ $$$$ \\ $$$$ \\ $$
Answered by A5T last updated on 29/Apr/25

$$\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{c}+\mathrm{a}}+\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{a}+\mathrm{b}}\geqslant\frac{\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)^{\mathrm{2}} }{\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{a}+\mathrm{a}+\mathrm{b}}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{2}} \\ $$