Menu Close

Question-219731




Question Number 219731 by Nescio last updated on 01/May/25
Answered by breniam last updated on 03/May/25
=lim_(x→0) ((sin(x^2 ))/x^2 )×(x/(log(1+2x)))×tan(x)=L  lim_(x→0) ((sin(x^2 ))/x^2 )=1  lim_(x→0) (x/(log(2x+1)))=^H lim_(x→0) (1/(2/(2x+1)))=(1/2)  lim_(x→0) tan(x)=0  L=0
$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }×\frac{{x}}{\mathrm{log}\left(\mathrm{1}+\mathrm{2}{x}\right)}×\mathrm{tan}\left({x}\right)={L} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}}{\mathrm{log}\left(\mathrm{2}{x}+\mathrm{1}\right)}\overset{{H}} {=}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\frac{\mathrm{2}}{\mathrm{2}{x}+\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}tan}\left({x}\right)=\mathrm{0} \\ $$$${L}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *