Menu Close

f-w-0-s-1-s-s-1-e-sw-ds-s-0-s-lt-0-1-s-gt-0-




Question Number 219730 by SdC355 last updated on 01/May/25
f(w)=∫_0 ^( ∞)  ((θ(s−1))/(s(s−1)^α ))e^(−sw)  ds  θ^� (s)= { ((0  s<0)),((1  s>0)) :}
$${f}\left({w}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\frac{\theta\left({s}−\mathrm{1}\right)}{{s}\left({s}−\mathrm{1}\right)^{\alpha} }{e}^{−{sw}} \:\mathrm{d}{s} \\ $$$$\hat {\theta}\left({s}\right)=\begin{cases}{\mathrm{0}\:\:{s}<\mathrm{0}}\\{\mathrm{1}\:\:{s}>\mathrm{0}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *