Menu Close

If-a-b-c-d-gt-0-a-2-b-2-c-2-d-2-4-Then-prove-that-1-1-ab-3-1-1-ac-3-1-1-ad-3-1-1-bc-3-1-1-bd-3-1-1-cd-3-3-4-




Question Number 219843 by hardmath last updated on 02/May/25
If   a,b,c,d > 0         a^2 +b^2 +c^2 +d^2  = 4  Then prove that  (1/((1+ab)^3 )) + (1/((1+ac)^3 )) + (1/((1+ad)^3 )) + (1/((1+bc)^3 )) + (1/((1+bd)^3 )) + (1/((1+cd)^3 )) ≥ (3/4)
$$\mathrm{If}\:\:\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\:>\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} \:=\:\mathrm{4} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{ab}\right)^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{ac}\right)^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{ad}\right)^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{bc}\right)^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{bd}\right)^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{cd}\right)^{\mathrm{3}} }\:\geqslant\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *