Question Number 219911 by Nicholas666 last updated on 03/May/25

$$ \\ $$$$\:\:\:\:\int_{\:\mathrm{0}} ^{\:\infty} \left(\underset{{n}\geqslant\mathrm{1}} {\sum}\:\frac{{sin}\left(\mathrm{2}\pi{nx}\right)}{{n}}\right)\frac{{dx}}{{x}^{{s}+\mathrm{1}} } \\ $$$$ \\ $$
Commented by MrGaster last updated on 03/May/25

$$\underset{{n}\geqslant\mathrm{1}} {\overset{\left(?\right)} {\sum}}\:\mathrm{Only}\:\mathrm{the}\:\mathrm{lower}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{givenb} \\ $$$$\mathrm{ut}\:\mathrm{the}\:\mathrm{upper}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{missing}? \\ $$
Answered by MrGaster last updated on 03/May/25

$$\mathrm{if}\:\exists\left(\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}\left(\mathrm{2}\pi{nx}\right)}{{n}}\right)\frac{{dx}}{{x}^{{s}+\mathrm{1}} }\Rightarrow=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\left(\mathrm{2}\pi{nx}\right)}{{x}^{{s}+\mathrm{1}} }{dx} \\ $$$$\overset{{t}=\mathrm{2}\pi{nx}} {=}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}\pi{n}\right)^{{s}} }{{n}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\:{t}}{{t}^{{s}+\mathrm{1}} }{dt} \\ $$$$=\left(\mathrm{2}\pi\right)^{{s}} \zeta\left(\mathrm{1}−{s}\right)\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\:{t}}{{t}^{{s}+\mathrm{1}} }{dt} \\ $$$$=\left(\mathrm{2}\pi\right)^{{s}} \zeta\left(\mathrm{1}−{s}\right)\centerdot\frac{\pi}{\mathrm{2}\Gamma\left({s}+\mathrm{1}\right)\mathrm{sin}\left(\frac{\pi{s}}{\mathrm{2}}\right)} \\ $$$$=\frac{\left(\mathrm{2}\pi\right)^{{s}} \pi\zeta\left(\mathrm{1}−{s}\right)}{\mathrm{2}\Gamma\left({s}+\mathrm{1}\right)\mathrm{sin}\left(\frac{\pi{s}}{\mathrm{2}}\right)} \\ $$$$=\frac{\left(\mathrm{2}\pi\right)^{{s}} \pi\zeta\left(\mathrm{1}−{s}\right)}{\mathrm{2}^{\mathrm{1}} \Gamma\left({s}+\mathrm{1}\right)}\centerdot\frac{\mathrm{1}}{\mathrm{sin}\left(\frac{\pi{s}}{\mathrm{2}}\right)} \\ $$$$=\frac{\left(\mathrm{2}\pi\right)^{{s}} \Gamma\left(\mathrm{1}−{s}\right)\zeta\left(\mathrm{1}−{s}\right)}{\mathrm{2}}\centerdot\frac{\pi}{\Gamma\left({s}+\mathrm{1}\right)\mathrm{sin}\left(\frac{\pi{s}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}−{s}\right)} \\ $$$$=\frac{\left(\mathrm{2}\pi\right)^{{s}} \zeta\left(\mathrm{1}−{s}\right)}{\mathrm{2}}\centerdot\frac{\pi}{\Gamma\left({s}+\mathrm{1}\right)\mathrm{sin}\left(\frac{\pi{s}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}−{s}\right)} \\ $$$$=\frac{\left(\mathrm{2}\pi\right)^{{s}} \pi\zeta\left(\mathrm{1}−{s}\right)}{\mathrm{2}}\centerdot\frac{\pi}{\Gamma\left({s}+\mathrm{1}\right)\mathrm{sin}\left(\frac{\pi{s}}{\mathrm{2}}\right)} \\ $$$$=\frac{\left(\mathrm{2}\pi\right)^{{s}} \zeta\left(\mathrm{1}−{s}\right)}{\mathrm{2}}\centerdot\frac{\Gamma\left(\frac{{s}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{1}−{s}}{\mathrm{2}}\right)} \\ $$$$=\frac{\left(\mathrm{2}\pi\right)^{{s}} \zeta\left(\mathrm{1}−{s}\right)\Gamma\left(\frac{{s}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{\mathrm{1}−{s}}{\mathrm{2}}\right)} \\ $$$$=\frac{\pi^{\mathrm{1}−{s}} \zeta\left(\mathrm{1}−{s}\right)}{\mathrm{2}\:\mathrm{sin}\left(\frac{\pi{s}}{\mathrm{2}}\right)} \\ $$$$ \\ $$