Menu Close

Question-220007




Question Number 220007 by Noorzai last updated on 04/May/25
Commented by MrGaster last updated on 04/May/25
conditions are not enough and the meaning is unclear, please add or upload again if there is anything that has not been added.
Answered by efronzo1 last updated on 04/May/25
 a^3 −b^3  = (a−b)(a^2 +ab+b^2 )
$$\:{a}^{\mathrm{3}} −{b}^{\mathrm{3}} \:=\:\left({a}−{b}\right)\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Commented by Frix last updated on 04/May/25
The area of a circle is r^2 π
$$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{is}\:{r}^{\mathrm{2}} \pi \\ $$
Answered by Frix last updated on 04/May/25
a^2 −b^3 =(a−b^(3/2) )(a+b^(3/2) )  a^2 −b^3 =(a^(2/3) −b)(a^(4/3) +a^(2/3) b+b^2 )=  =(a^(2/3) −b)(((1/2)+((√3)/2)i)a^(2/3) +b)(((1/2)−((√3)/2)i)a^(2/3) +b)
$${a}^{\mathrm{2}} −{b}^{\mathrm{3}} =\left({a}−{b}^{\frac{\mathrm{3}}{\mathrm{2}}} \right)\left({a}+{b}^{\frac{\mathrm{3}}{\mathrm{2}}} \right) \\ $$$${a}^{\mathrm{2}} −{b}^{\mathrm{3}} =\left({a}^{\frac{\mathrm{2}}{\mathrm{3}}} −{b}\right)\left({a}^{\frac{\mathrm{4}}{\mathrm{3}}} +{a}^{\frac{\mathrm{2}}{\mathrm{3}}} {b}+{b}^{\mathrm{2}} \right)= \\ $$$$=\left({a}^{\frac{\mathrm{2}}{\mathrm{3}}} −{b}\right)\left(\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){a}^{\frac{\mathrm{2}}{\mathrm{3}}} +{b}\right)\left(\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){a}^{\frac{\mathrm{2}}{\mathrm{3}}} +{b}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *