Menu Close

0-J-r-e-rt-dr-h-1-z-h-z-h-1-J-r-e-rt-dr-z-j-is-point-of-J-z-0-z-1-0-h-1-F-r-t-r-z-h-r-z-h-1-i-can-t-solve-anymore-




Question Number 220015 by SdC355 last updated on 04/May/25
∫_0 ^( ∞)  ∣∣J_ν (r)∣∣e^(−rt)  dr=Σ_(h=1) ^∞  ∫_z_h  ^( z_(h+1) )  J_ν (r)e^(−rt) dr  z_j  is point of  J_ν (z)=0 , z_1 =0  Σ_(h=1) ^∞  [F(r,t)]_(r=z_h ) ^(r=z_(h+1) )    i can′t solve anymore
$$\int_{\mathrm{0}} ^{\:\infty} \:\mid\mid{J}_{\nu} \left({r}\right)\mid\mid{e}^{−{rt}} \:\mathrm{d}{r}=\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\int_{{z}_{{h}} } ^{\:{z}_{{h}+\mathrm{1}} } \:{J}_{\nu} \left({r}\right){e}^{−{rt}} \mathrm{d}{r} \\ $$$${z}_{{j}} \:\mathrm{is}\:\mathrm{point}\:\mathrm{of}\:\:{J}_{\nu} \left({z}\right)=\mathrm{0}\:,\:{z}_{\mathrm{1}} =\mathrm{0} \\ $$$$\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left[{F}\left({r},{t}\right)\right]_{{r}={z}_{{h}} } ^{{r}={z}_{{h}+\mathrm{1}} } \: \\ $$$$\mathrm{i}\:\mathrm{can}'\mathrm{t}\:\mathrm{solve}\:\mathrm{anymore} \\ $$
Answered by MrGaster last updated on 04/May/25
Σ_(h=1) ^∞ [−((J_ν (r)e^(−rt) )/t)]_(r=z_h ) ^(r=z_(h+1) ) =((J_ν (0))/t)+lim_(r→∞) ((J_ν (r)e^(−rt) )/t)  −((J_ν (0))/t)  −((J_ν (0))/t)=0 for ν>0  lim_(r→∞) ((J_ν (r)e^(−rt) )/t)=0  ∫_0 ^∞ J_ν (r)e^(−rt) dr=((((√(t^2 +1))−t)^ν )/( (√(t^2 +1))))
$$\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\left[−\frac{{J}_{\nu} \left({r}\right){e}^{−{rt}} }{{t}}\right]_{{r}={z}_{{h}} } ^{{r}={z}_{{h}+\mathrm{1}} } =\frac{{J}_{\nu} \left(\mathrm{0}\right)}{{t}}+\underset{{r}\rightarrow\infty} {\mathrm{lim}}\frac{{J}_{\nu} \left({r}\right){e}^{−{rt}} }{{t}} \\ $$$$\cancel{−\frac{{J}_{\nu} \left(\mathrm{0}\right)}{{t}}} \\ $$$$−\frac{{J}_{\nu} \left(\mathrm{0}\right)}{{t}}=\mathrm{0}\:\mathrm{for}\:\nu>\mathrm{0} \\ $$$$\underset{{r}\rightarrow\infty} {\mathrm{lim}}\frac{{J}_{\nu} \left({r}\right){e}^{−{rt}} }{{t}}=\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\infty} {J}_{\nu} \left({r}\right){e}^{−{rt}} {dr}=\frac{\left(\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}−{t}\right)^{\nu} }{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}} \\ $$
Commented by MrGaster last updated on 04/May/25
Note: The original absolute value is unnecessary, so it is removed.

Leave a Reply

Your email address will not be published. Required fields are marked *