Menu Close

If-0-a-b-1-Then-prove-that-a-b-a-b-a-b-dxdydz-1-xyz-b-a-2-a-b-dx-1-x-3-




Question Number 220022 by hardmath last updated on 04/May/25
If   0 ≤ a ≤ b ≤ 1  Then prove that:  ∫_a ^( b) ∫_a ^( b) ∫_a ^( b)  ((dxdydz)/( (√(1 + xyz)))) ≥ (b−a)^2  ∫_a ^( b)  (dx/( (√(1 + x^3 ))))
$$\mathrm{If}\:\:\:\mathrm{0}\:\leqslant\:\mathrm{a}\:\leqslant\:\mathrm{b}\:\leqslant\:\mathrm{1} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\frac{\mathrm{dxdydz}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{xyz}}}\:\geqslant\:\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} \:\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{3}} }}\: \\ $$
Answered by MrGaster last updated on 04/May/25
(1):∫_a ^( b) ∫_a ^( b) ∫_a ^( b)  ((dxdydz)/( (√(1 + xyz))))≥∫_a ^( b)  ((dx dy dz)/( (√(1 + x^3 )))) (∵xyz≤x^3 ∧0≤a≤b≤1)  =(b−a)^2 ∫_a ^b (dx/( (√(1 + x^3 ))))   (2):J=∫_a ^( b)  (1/( (√(1 + xyz)))) dy dz  yz≤(((y+z)/2))^2 ⇒^∧ (√(1+xyz))≤(√(1+x(((x+z)/2))^2 ))  ∴(1/( (√(1+xyz))))≥(1/( (√(1+x(((y+z)/2))^2 ))))  The function f(u)=(1/( (√(1+xu^2 ))))is convex in u .  By Jensen^, s inequality  (1/((b−a)^2 ))∫∫(1/( (√(1+x(((y+z)/2))^2 ))))dydz≥(1/( (√(1+x(((2a+2b)/4))^2 ))))  Integrate the inequality   over x from a to b:  ∫_(a ) ^b Jdx≥∫_a ^b (b−a)(1/( (√(1−x^3 ))))dx  ⇒∫∫∫((dx dy dz)/( (√(1+xyz))))≥(b−a)^2 ∫_a ^b (dx/( (√(1+x^3 ))))  ∫_a ^( b) ∫_a ^( b) ∫_a ^( b)  ((dxdydz)/( (√(1 + xyz)))) ≥ (b−a)^2  ∫_a ^( b)  (dx/( (√(1 + x^3 ))))   (3):∀x,y,z∈[a,b],xyz≤x^3 ⇒(1/( (√(1+xyz))))≥(1/( (√(1+x^3 ))))  ∫_a ^( b) ∫_a ^( b) ∫_a ^( b)  ((dxdydz)/( (√(1 + xyz)))) ≥ ∫_a ^( b) ∫_a ^b ∫_a ^b  ((dxdydz)/( (√(1 + x^3 ))))   ∫_b ^a dx∫_b ^a dy∫_b ^a (dz/( (√(1+x^3 ))))=(b−a)^2 ∫_a ^( b)  (dx/( (√(1 + x^3 ))))   ∫_a ^( b) ∫_a ^( b) ∫_a ^( b)  ((dxdydz)/( (√(1 + xyz)))) ≥ (b−a)^2  ∫_a ^( b)  (dx/( (√(1 + x^3 ))))
$$\left(\mathrm{1}\right):\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\frac{\mathrm{dxdydz}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{xyz}}}\geq\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\frac{\mathrm{d}{x}\:{dy}\:{dz}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{3}} }}\:\left(\because{xyz}\leq{x}^{\mathrm{3}} \wedge\mathrm{0}\leq{a}\leq{b}\leq\mathrm{1}\right) \\ $$$$=\left({b}−{a}\right)^{\mathrm{2}} \int_{{a}} ^{{b}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{3}} }}\: \\ $$$$\left(\mathrm{2}\right):{J}=\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{xyz}}}\:{dy}\:{dz} \\ $$$${yz}\leq\left(\frac{{y}+{z}}{\mathrm{2}}\right)^{\mathrm{2}} \overset{\wedge} {\Rightarrow}\sqrt{\mathrm{1}+{xyz}}\leq\sqrt{\mathrm{1}+{x}\left(\frac{{x}+{z}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\therefore\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{xyz}}}\geq\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}\left(\frac{{y}+{z}}{\mathrm{2}}\right)^{\mathrm{2}} }} \\ $$$$\mathrm{The}\:\mathrm{function}\:{f}\left({u}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{xu}^{\mathrm{2}} }}\mathrm{is}\:\mathrm{convex}\:\mathrm{in}\:{u}\:. \\ $$$$\mathrm{By}\:\mathrm{Jensen}^{,} \mathrm{s}\:\mathrm{inequality} \\ $$$$\frac{\mathrm{1}}{\left({b}−{a}\right)^{\mathrm{2}} }\int\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}\left(\frac{{y}+{z}}{\mathrm{2}}\right)^{\mathrm{2}} }}{dydz}\geq\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}\left(\frac{\mathrm{2}{a}+\mathrm{2}{b}}{\mathrm{4}}\right)^{\mathrm{2}} }} \\ $$$$\mathrm{Integrate}\:\mathrm{the}\:\mathrm{inequality}\: \\ $$$$\mathrm{over}\:{x}\:\mathrm{from}\:{a}\:\mathrm{to}\:{b}: \\ $$$$\int_{{a}\:} ^{{b}} {Jdx}\geq\int_{{a}} ^{{b}} \left({b}−{a}\right)\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}{dx} \\ $$$$\Rightarrow\int\int\int\frac{{dx}\:{dy}\:{dz}}{\:\sqrt{\mathrm{1}+{xyz}}}\geq\left({b}−{a}\right)^{\mathrm{2}} \int_{{a}} ^{{b}} \frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }} \\ $$$$\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\frac{\mathrm{dxdydz}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{xyz}}}\:\geqslant\:\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} \:\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{3}} }}\: \\ $$$$\left(\mathrm{3}\right):\forall{x},{y},{z}\in\left[{a},{b}\right],{xyz}\leq{x}^{\mathrm{3}} \Rightarrow\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{xyz}}}\geq\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }} \\ $$$$\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\frac{\mathrm{dxdydz}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{xyz}}}\:\geq\:\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{{a}} ^{{b}} \int_{{a}} ^{{b}} \:\frac{\mathrm{dx}{dydz}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{3}} }}\: \\ $$$$\int_{{b}} ^{{a}} {dx}\int_{{b}} ^{{a}} {dy}\int_{{b}} ^{{a}} \frac{{dz}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }}=\left({b}−{a}\right)^{\mathrm{2}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{3}} }}\: \\ $$$$\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\frac{\mathrm{dxdydz}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{xyz}}}\:\geqslant\:\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} \:\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{3}} }}\: \\ $$
Commented by hardmath last updated on 04/May/25
  One of the perfect solutions as always, thank you very much, my precious magical mathematician, you are great
$$ \\ $$One of the perfect solutions as always, thank you very much, my precious magical mathematician, you are great

Leave a Reply

Your email address will not be published. Required fields are marked *