Menu Close

if-f-0-0-f-continuous-and-f-1-x-f-1-y-2f-1-x-y-x-y-gt-0-then-a-b-gt-0-a-b-a-b-a-b-f-1-x-y-z-dxdydz-b-a-2-a-b-f-1-x-dx-




Question Number 219957 by hardmath last updated on 04/May/25
if   f:(0,∞)→(0,∞)        f  continuous  and   f((1/x)) + f((1/y)) = 2f((1/(x+y)))  ∀ x,y > 0   then   ∀ a,b > 0:  ∫_a ^( b) ∫_a ^( b) ∫_a ^( b)  f((1/(x+y+z)))dxdydz = (b−a)^2 ∫_a ^( b) f((1/x))dx
$$\mathrm{if}\:\:\:\mathrm{f}:\left(\mathrm{0},\infty\right)\rightarrow\left(\mathrm{0},\infty\right) \\ $$$$\:\:\:\:\:\:\mathrm{f}\:\:\mathrm{continuous} \\ $$$$\mathrm{and}\:\:\:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:+\:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{y}}\right)\:=\:\mathrm{2f}\left(\frac{\mathrm{1}}{\mathrm{x}+\mathrm{y}}\right) \\ $$$$\forall\:\mathrm{x},\mathrm{y}\:>\:\mathrm{0}\:\:\:\mathrm{then}\:\:\:\forall\:\mathrm{a},\mathrm{b}\:>\:\mathrm{0}: \\ $$$$\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}+\mathrm{y}+\mathrm{z}}\right)\mathrm{dxdydz}\:=\:\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\mathrm{dx} \\ $$
Answered by MrGaster last updated on 04/May/25
Answered by MrGaster last updated on 04/May/25
(2):∫_a ^( b) ∫_a ^( b) ∫_a ^( b)  f((1/(x+y+z)))dxdydz=(1/2)∫_a ^( b) ∫_a ^( b) ∫_a ^( b) [f((1/(x+y)))+f((1/z))]dxxydz  =(1/2)[(b−a)∫_a ^b ∫_a ^b f((1/(x+y)))dydx+(b−a)^2 ∫_a ^b f((1/z))dz]  ∫_a ^( b) ∫_a ^( b) f((1/(x+y)))dydx=(b−a)∫_a ^b f((1/x))dx  ⇒Original formula=(1/2)[(b−a)^2 ∫_(a ) ^b ((1/x))dx+(b−a)^2 ∫_a ^b f((1/x))dx]  =(b−a)^2 ∫_a ^b f((1/x))dx
$$\left(\mathrm{2}\right):\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}+\mathrm{y}+\mathrm{z}}\right)\mathrm{dxdydz}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \left[{f}\left(\frac{\mathrm{1}}{{x}+{y}}\right)+{f}\left(\frac{\mathrm{1}}{{z}}\right)\right]{dxxydz} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\left({b}−{a}\right)\int_{{a}} ^{{b}} \int_{{a}} ^{{b}} {f}\left(\frac{\mathrm{1}}{{x}+{y}}\right){dydx}+\left({b}−{a}\right)^{\mathrm{2}} \int_{{a}} ^{{b}} {f}\left(\frac{\mathrm{1}}{{z}}\right){dz}\right] \\ $$$$\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} {f}\left(\frac{\mathrm{1}}{{x}+{y}}\right){dydx}=\left({b}−{a}\right)\int_{{a}} ^{{b}} {f}\left(\frac{\mathrm{1}}{{x}}\right){dx} \\ $$$$\Rightarrow\mathrm{Original}\:\mathrm{formula}=\frac{\mathrm{1}}{\mathrm{2}}\left[\left({b}−{a}\right)^{\mathrm{2}} \int_{{a}\:} ^{{b}} \left(\frac{\mathrm{1}}{{x}}\right){dx}+\left({b}−{a}\right)^{\mathrm{2}} \int_{{a}} ^{{b}} {f}\left(\frac{\mathrm{1}}{{x}}\right){dx}\right] \\ $$$$=\left({b}−{a}\right)^{\mathrm{2}} \int_{{a}} ^{{b}} {f}\left(\frac{\mathrm{1}}{{x}}\right){dx} \\ $$
Commented by hardmath last updated on 04/May/25
  Thank you, my dear, valuable magical mathematician, it's nice to see your perfect solutions.
$$ \\ $$Thank you, my dear, valuable magical mathematician, it's nice to see your perfect solutions.

Leave a Reply

Your email address will not be published. Required fields are marked *