Menu Close

If-f-x-y-x-2-y-2-n-2n-2n-1-x-y-x-y-x-then-using-Euler-s-theorem-on-homogenous-functions-show-that-x-2-2-f-x-2-2xy-2-f-x-y-y-2-2-f-y-2-x-2-y-2-n




Question Number 220131 by fantastic last updated on 06/May/25
If   f(x,y)=(((x^2 +y^2 )^n )/(2n(2n−1)))+xφ((y/x))+Ψ((y/x)),  then using Euler′s theorem on homogenous functions,show that  x^2 ((δ^2 f)/(δx^2 ))+2xy((δ^2 f)/(δxδy))+y^2 ((δ^2 f)/(δy^2 ))=(x^2 +y^2 )^n
$${If}\:\:\:{f}\left({x},{y}\right)=\frac{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{{n}} }{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right)}+{x}\phi\left(\frac{{y}}{{x}}\right)+\Psi\left(\frac{{y}}{{x}}\right), \\ $$$${then}\:{using}\:{Euler}'{s}\:{theorem}\:{on}\:{homogenous}\:{functions},{show}\:{that} \\ $$$${x}^{\mathrm{2}} \frac{\delta^{\mathrm{2}} {f}}{\delta{x}^{\mathrm{2}} }+\mathrm{2}{xy}\frac{\delta^{\mathrm{2}} {f}}{\delta{x}\delta{y}}+{y}^{\mathrm{2}} \frac{\delta^{\mathrm{2}} {f}}{\delta{y}^{\mathrm{2}} }=\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{{n}} \\ $$
Answered by MrGaster last updated on 06/May/25
Commented by fantastic last updated on 06/May/25
wow!!
$${wow}!! \\ $$
Answered by MrGaster last updated on 06/May/25
Commented by MrGaster last updated on 06/May/25
.Solution 2

Leave a Reply

Your email address will not be published. Required fields are marked *